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ABSTRACT

This note deals with the theory of an infinitely wide homogeneous
electron stream which is velocity modulated in a plane perpendicular to
the electron motion. The study is based on the exact wave equation and its

exact solutions. The results are valid in the single velocity region only.
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1. BASIC ASSUMPTIONS

The system we want to study consists of an infinitely wide homo-
geneous electron plasma stream, which is constrained to move in the pos-
itive z-direction. The composition of the plasma is such that the undis-
turbed d-c stream is electrically neutral. In the undisturbed case both the
electrons and the ions move in a field-free space with the velocity A\
while the corresponding convection current densities are io and - io
The presence of the neutralizing ions is necessary in order to satisfy
Maxwell's third equation in the electric d-c field-free case. Furthermore,
in the theoretical case of an infinitely wide stream, the transverse d-c ‘
magnetic field must vanish because the infinitely wide system is symmetrical
with respect to any arbitrary longitudinal axis. It follows from Maxwell's
first equation. which in the undisturbed case is identical to Ampere's
law, that the transverse magnetic d-c field can vanish only when the total
undisturbed direct-current density varishes. This explains why we not
only have to neutralize the undisturbed electronic d-c charge density but
the undisturbed electroric d-c current density as well. In a transversely
finite stream the ions can be assumed stationary but the edge effects on
the propagation of the disturbances will then have to be taken into account,
which leads to considerable complexil:y.1

The purpose of this study is to make an accurate investigation of
how the system described propagates disturbances that may be produced
by superimposing on the electrons a velocity modulation vto(t). where
t is time, at the plane z = 0. The positive ions are assumed to be so

heavy that they are not affected by the disturbance.



The propagation of such disturbances takes place in the form of the
so-called space-charge waves, In this case the waves will be plane and
uniform. However, in dealing with space-charge waves, one usually linear-
izes the various equations, which means that cross products between the
quantities describing the disturbances are neglected. In the present study

no such approximations are made.
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II. BASIC EQUATIONS

The purpose of this section is to formulate the basic equations des-
cribing the disturbed stream. We introduce the following notation:

viz, t) = v, + vl(:, t) = the electron velocity,

pl(z, t) = Po + pl(z, t) = the electron charge density,
i(z,t) = io + il(z, t) = the electron current density,
E(z,t) = Eo + El(z, t) = the (axial) electric field.

The quantities with subnotation "o'" refer to the undisturbed sys-
tem, while the quantities indexed by 1 represent the effects of the dis-
turbance. According to our basic assumptions E_ = 0. Now, the position
of an electron, z, can be written z = z, + 2 where 2z, is the undisturbed
position and zZ, the displacement from this position experienced by the

electron because of the disturbance., TlLus we have the following three

relations:
dz dz
=g;. voz—&o— vl=1‘l- . (la, b, c)

Accordirg to the definition of convection current density, one has
i=pv io =P,V il = (Po+pl) (vo + vl) PV - (2a, b, c)
The equation of continuity,
di 1 9p 1
55 +'51:— =0 , (3)
is satisfied by introducing a quantity S in the following manner:

9 9
i =g = - (43, b)



By the use of Equations (4a,b) and (1a,b,c) in (2c), one obtains

5, ds B\, 2%
3 T dt ¥z/° T "o Tdt
The operator operating on S is just d/dt. Integration yields S :pc"z‘,

which is used in Equations (4a, b) to obtain

bz1 o

iy =Py 3% Py = -P, ¥ - (5a,b)

The nonrelativistic equation of motion yields

2
dz‘

m ;Z = - eE1 , (6)
where -e is the charge and m the mass of the electron. Since 8/8x =0
= 8/8y in the infinitely wide system, we get from Maxwell's first equation,

. °E,

i, +e —— =0 ) (7
where < is the dielectric constant of freecspace. Equation (7) states

that the total disturbance current density vanishes. By the use of Equations

(5a) and (6) in Equation (7) one gets

9 €,m dz'i
T |\Po% - ¢ r)]=90 .

which is satisfied if

where

The function f(z) arises from integration. However, it must equal gero

since Equation (8) must hold even for the undisturbed case £, = 0.
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Equation (8), of course, is valid only when the disturbance is such
that L, is & single-valued function of z, that is, electron overtaking must
not occur. If electrons with different displacements, say SO PYRER

» simultaneously exist in a given plane z, then we must use the ex-

®1s
pression,
bzl
i, = P n
1 o 8t !

n=

rather than Equation (5a) to eliminate i, from Equation (7), and the problem

1
becomes extremely complicated. Equation (8) has the general solution,

z, = A sin upt 4+ B cos upt. (9)

where A and B are constants. This shows that the electrons in any given

z, plane oscillate harmonically with the (plasma) frequency “p around the
undisturbed position 2z o (=v°t) independently of the motion of other electrons,
provided the given plane is not overtaken by other electron planes, It is
extremely interesting to observe that the plasma frequency wp is the same

as the one obtained in a linearized theory.
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II. EXACT NONLINEAR PLANE KLYSTRON WAVES

The question arises as to where the nonlinearities are imbedded
with respect to the fact that Equation (8) describes linear oscillations.
The answer to this question is discussed in the present chapter.

By the use of Equation (1b) one can write Equation (8) in the form,

2
—L + 8l =0 (10)
dz Pl ’
o

where

pp = wp/ Vo

The general solution to Equation (10) is
2 = 1-"1 sin ppzo + l‘z cos pp’o ; (11)
Fl 2 are constants, that is, they must satisfy the equation,

dF

1.’1_’5 =0 . (12)
°
%o
Now, the expressiont -5 is constant for any given electron, since
o

=0 , (13)

which one easily proves by the use of Equation (1b). This means that
z
Fl 2 can be considered as two arbitrary functions of t - V?' . By doing
! o

80 we account for the fact that although Fl 2 &re constants for a given

electron, the constants associated with another electron in another plane

are, in general, different, Since an electron (plane) is identified by its
s

characteristic constant, t - 79- , it follows that the amplitude factors
o

-6-



Fl 2 must be functions of this characteristic constant. Observe that
z, .
t-o— =t where t is the time when the electron plane was located at

0
0. Thus one can write

-r (-——) linp: +!‘2 (-—9 conpl ) (14)

and, with Equations (1b) and (12),

d'l zo 'o .
V| == ppvo 1-‘1 ( - ;;-) cos ppzo - FZ t- ‘-’-; sin ppzo . (15)

It is clear that one wishes to express the disturbance quantities

in terms of the actual distance co-ordinate z rather than in terms of the
undisturbed position co-ordinate z,. For instance, if one wants to cal-
culate i 1 from Equation (14) by the use of Equation {5a), which contains
a time derivative of 2, for a fixed distance %, one has to eliminate s o in
the right-hand side of Expression (14) by the use of the relation g, = 8-2,.

Equation (14) now becomes

z-5, ’
L= rl t- Ve sin pp(z-sl) sz t -

This result represents a transcendental equation for 2, rather than

conﬂp(:-ll) . (16)

an explicit expression. Now, !‘1 and !‘2 have to be determined from the
boundary values at the source of disturbance located at, say, s=0. It
is clear from Equation (16) that z, (t, z) is a nonlinear function of the
boundary values, and the phenomena therefore are nonlinear when ob-
served from a fixed point in space,

Suppose, for the sake of simplicity, that the electron stream is
velocity modulated in an infinite gridded gap of zero length at the plane

2=0. Thus z, = 0 at 2 = 0, which imposes g, = 0. From Equation (14)



ki

one now contludes that Fz = 0. Furthermore, if we assume that the
electrons leave the gap with a velocity Vo + v o(t), where v 1"(t) is not
necessarily a periodic disturbance, we obtain from Equation (15)

pvaFI(t) = vlo(t)

Equation (14) can now be written

3
v t - ..2.
lo Vo 1 n B (17
2, = sinf_= ,
1 v, F; po

whereas Equation (15) yields

s
Y11=V (- ;9) cos pp'o . (18)
o

Upon elimination of z, between Equation (17) and z = 2 +sz,, we

V1o G'
2. =
1 vo

From Equation (19) one can express azl/at and 8:1/83. By the use of

obtain

8-ll>
Yo 1 . 1
ol sin B (2-3)) . (19)

(5a, b) we now obtain

\ AN
-zl-°- sin P z,
il vop P
.= v £ vy (20)
° lo lo .
1+ —— cos ppzo -—y— 8in pp'o
0 ve
o'p
and
v, v
—zl& sin P s, -l cos P =,
) vob P P
—= 4 , (21)
Po 1+22 cos -3 ._z__vl’o sinf =
) PO -] Po
o'p



where

dv ( -
%
- []
Vio = Vie G-V) andvlo z
A t )

00"

v
o

Since, from Equations (6) and (8), El a%‘; g’l » we finally get, with

Equation (17),

El =-:—‘ vo’i)v'lo sin ﬂ«plo . (22)

In principle one can now plot any one of the disturbance quantities
vy il’ Py and EI(C zl) as functions of s, for any fixed time t, provided
the. modulation function v o(t) is given, Since %, too, can be plotted
versus z , it becomes possible to plot vy il' L and El versus s (ss°+|l),
the actual distance co-ordinate. The practical value of such graphs is
limited, however. Instead one would like to have, for example, il expressed
in a Fourier series in time. We deal with this question in the next
chapter.

Finally we formulate the condition that assures that no overtaking
occurs., Suppose we plot 2 (azo + zl) by the use of Equation (17) as a
function of z, for a fixed time, One immediately infers that electron
overtaking has occurred in regions where the slope of our curve is
negative, Thus 8:/8:0'5 0, or,

s

=

’ (23)

which is the same condition we are looking for.



IV. D-C "MODULATED" STREAM

In order to point out a peculiar property of the infinitely wide
stream, we will assume that the stream is "modulated" by a d-c vel-
ocity step. Thus the electron velocity is v o + v‘;, where tvflsconcunt
v, atzs= 0, whereas the ion velocity is unchanged. !‘ro.m'l:quttiom
(17) and (18) one now obtains

Vi
2, = sinf_= (24)
17V, B; po
and
v,=v® cosP .z . (25)
1 1 Ppo
rather than
o
! (26)
L. = —
1 Vo °
and
o
Vi=V] o (27)

which are the results one would obtain in a practical system with finite
dimensions. However, it has already been pointed out in Section I that
because of Maxwell's third equation, an infinitely extended d-c stream of
electrons cannot exist unless the charged densities resulting from pos-
itive ions and electrons neutralize. The charge density of electrons
obviously is i /(v_ + v‘l’)f B, inthe d-c beam described by Equations (26)
and (27). These Equations are therefore not related to the infinite beam,
Equations (24) and (25) are our exact solutions. They demonstrate

that the electrons, as in the case of a-c modulation (8ection V), oscillate

-10-



around the undisturbed position g It is clear that the average velocity
of each electron must equal V! that is, the electron must keep in step
with the positive ions, if we are to avoid an electrostatic catastrophe.
This is true regardless of the type of modulation impressed on the
electrons.

Those acquainted with the linearised space-charge-wave theory
of the radially finite beam, recall that if the beam radius is large,
then the plasma frequency reduction factors for sufficiently high signal
frequencies approach unity. ! At zero signal frequency, the reduction
factor is sero, which corresponds to Equations (26) and (27).

If we linearize Equations (24) and (25), that, is if we write

"‘1’ 1
l v o ﬂp P

vy :v‘; cos pps .
we immediately see that the reduction factor for the theoretical infinite

stream at sero signal frequency is unity and not zero, as it is for a very
large but finite beam.

It is now clear that the infinitely wide electron stream necess-
itates assumptions concerning the ions(8ection I), imposing certain
restrictions on the electron dynamics that are not present in practical

devices, in addition to the fact that edge effects are neglected.

-11-



V. SINUSOIDALLY MODULATED STREAM

Let us assume for simplicity that the velocity modulation func-

;:ion is purely sinusoidal, that is,
Vo) =v] sinet (28)

where v‘l’ is constant. This modulation requires a voltage, vl(t). across

the infinitely short modulating gap given by

2
v v v 2
(o] +]
mvz

where V ° :'-2-3-9- is the undisturbed beam voltage. We shall later deal
with the more practical case of a purely sinusoidal gap voltage. Egquation

(17) now becomes

vO.
.lg.v.i. Fl; sinPs, sin (wt - B5) . (30)

The validity of Equation (30) is, of course, limited by Condition (23),

which yields

o
8:1(50, t) vi

- a‘cp.p_(pp cos pp'o sin T - pe sin pp'o cos T)5 -1, (31)

o
where T = wt - peso . Furthermore, we can determine T so that

le/azo is maximally negative from the equation,

oxd(s_, 1)
o
which yields
T Pe 0 33
cot +'Fp- tan ﬂp'o = . (33)

-12-



By the use of Equation (33) in Equation (31), one finds that over-

taking does not occur during any part of the cycle, if

(34)

If we consider the expression (34) as an equality, the real solution pp z,,

if it exists, is the ppzo value at which overtaking first occurs. If the
solution is imaginary, overtaking does not occur. It should be pointed out
that Expression (34) is of interest only when ﬂp < pe . It pp > pe , overs-
taking does not occur at all unless Ivil > Y which we exclude, of course.

By the use of Equations (33) and (34) in Equation (30), we can ex-

press the displacement when overtaking is just about to take place, as

§ Lg- 2]

[
p"1 . ;f

Fﬂé’;

(35)

2
1If (v‘;) << vz and p: << b:; then ppz Mg 0 according to Equation (35),

and Expression (34) becomes

v, P
. o'p 1
llnppz < v: p -M ’ (36)
e

- 13-



where

Thus, when M < 1, overtaking does not occur and when M = 1 overtaking
occurs at a distance %xp = (w/pr). where xp is the plasma wavelength.
If M > 1, overtaking occurs at a distance z < é)‘p given by M sinﬂpz =1.

The distance is measured from the modulating gap.

In the ballistic klystron theory of Webster,z electron overtaking
v
occurs at a distance given by X = 1, where X = v bez is the bunching
o
parameter. It is easy to see that in the present theory the overtaking
sinP_z

distance is gi by X =X = 1.
istance is given by X T;’L

We will now attempt to express 2z 1 explicitly in the form of a

w0

Fourier geries. If |v‘1’| << v, one finds from Equation {30) that |ppz1| << 1.

Thus Equation (30) may be written approximately as

o
2, = gL sinBz sin(et-pz) (37)
1-vo F; sin pz lmw-ﬂeo .

With the notations wt - pezo 0 and ot - pez = 90 , We can rewrite

Equation (37) in the form,

0 - eo xp sin @ , (38)

which may be expanded in a Fourier series

nzo jn®

- o
6-0 = ) D_ e . (39)

n==-

-14-



where

1 -jneo 40
Dn=2? (0-6°)e de° . (40)
L2
If n = 0 one obtains
3
1 deo

DO = 2-1-" (9 - 90) ¢ 1-5- de . (41)

-

By the use of Equation (38) one obtains Do = 0,

If n £ 0 Equation (40) yields

n
1 'jneo
Dn= i (] -eo)e deo R
-w

or

w n
1 -jn® o 1 d(e-e o) 1 -jn@ o
Dn = .3 [ (0-60) (:Iar e - z-'— —150—- m—n-,- e dOo »

- X5 -’
Go - CJ

where the first term is 'squal to zero, Therefore

w
1 -jnd,
Dn = -jz'—n—- e do . (42)
-

Use has been made of the fact that Equation (38) can also be written as
(6 + 2w) - (eo +2w)=X o sin (6 +2%) . Upon elimination of 6, between

Equations (42) and (38), one obtains

.
1 j(nxp sin @ - né) 1
Dn = m e do = .Th— Jn (nXp) ’ (43)
-w

«15-
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2
%

Remembering the integral representation for the Bessel functions of the

first kind, we get

L1
3 (0= o= f X 8in vy -ny) 4
)

We finally insert Equation (43) into Equation (39) to obtain
n =0
1 jneo
0-0,= & JalnX) e : (44)

nes -0
n#o0

Since J_ n (-nxp) = Jn(nxp), we can rewrite Equation (44) in the form

2, = BE' i In(nX ) sin n(ot - B,3) . (45)
e
ns
For small xp one obtains,
2
1 1 P 2
X —o B; sin pp: -ix? (at-pes) ty ‘.'.;_, ;Z’ sin pps sin Z(wt-pel) . (46)
P

The normalized a-c current density can be expressed in the form,

p 8:1
i), Tog¢
i-o.-- ngo =2 Jn(nxp) cos n (wt - pel) . (47)‘
n=

Equation (46) is formally identical to the corresponding result of the
classical klystron theory of Webster. 3 The difference lies in the fact
that the bunching parameter, Xp, takes the effect of the space-charge

debunching forces into account whereas the classical bunching parameter,

-16-



X, does not.

It is well known that xp = 1, 84 corresponds to maximum a-c current
density (saturation) at the fundamental frequency (n=1). The maximum
efficiency is then 58 per cent. However, Xp = }: 84 does not obey our
nonovertaking condition, xp € 1, which means that the theory is not
valid in the range of maximum efficiency. This fact is fully in accord
with our expectations. Suppose we observe the a-c current density at
a fixed distance 2 < xp/4. Also assume, to begin with, that the drive
is such that overtaking does not occur, that is, xp < 1. One easily infers
now that an increase in drive (v‘;) will increase the fundamental frequency
a-c current since all-electrons will .be.bvought cleser. to.the center.of
the bunch. However, if we increase the drive until electron overtaking
occurs at the observation point, then some electrons overtake the center
of the bunch and move.away from it. These electrons tend to weaken the
bunch, whereas otl;ero still move towards the center. It is clear that
an optimum drive level exists for each distance s, the saturation drive,
such that a further increase in drive would lead to a weaker fundamental
frequency a-c current because of the effect of electron overtaking. Ob-
viously one can increase the maximum efficiency of a klystron by delaying
overtaking. We shall deal with this question in the next section.

Recently Puchke4 has studied the planar klystron by solving the
partial differential equation of the problem by the use of the successive
approximation method. His results are obtained in the form of expansions
of the type in Equation (48 rather than in the form of the more accurate
series of Equation (45). According to Paschke's theory saturation occurs

for xp :VB/ 3. Unfortunately Paschke has not pointed out that this X o

-17-



value is well within the overtaking range, where the theory is no longer
valid. Although Xp = [873_ (or our result xp = 1.84) is certainly close

to the actual saturation value, one can hardly deal confidently with problems
related to saturation unless one properly includes the phenomenon that
produces saturation - electron overtaking - in the theory. An approximate
theory of this type for the infinitely wide stream has been developed by

Roe in unpublished notes. Some of Roe's results have been discussed by
Mihran. 3

Next we want to study the case of purely sinusoidal voltage modulation

o
v 4 sinwt. From the energy relation in the modulation gap, one obtains

2 o

v“(t) vi
14+ v =414 v sinwt ’ (48)

o o

or to the second-order accuracy,
2
o o o
v, (t) v v

LN AEY () T n

o o o

If ppz‘ << 1, one gets from Equation (17) and z = g, +5,,t0 the second-

order accuracy,

(50)

(54)

-18-



With the notations

v‘l’p

1 e .
X, = sin §_~7 .
4 Vo‘ B'p P

pl

and

2
X, =4 T\ P (sin B_s + sin 2p_s)
2 B\V, ) P, P P
one can rewrite Equation (52) in the form,

. . 2
9-90--)(pl sme-xpz sin” 6 . (52)

If we expand Equation (52) ir a Fourier series by the use of Equations
{39) and (40), we will obtain

n L1

de X X
=d o Y- 2 _ 2
DO -TTF [ (9 - 60) W do = -Tﬂ’- sin 6 d6 = '+ ’ (53)
-7 -
while
e .
1 -ing, 1 -jnd,
Dnn#o i f (9-60) e deo = }z;—n- ] e do =
- -N
X 2
1 ejn(xpl 8in 0 - sz sin” 0 - 0) 4
JZwn
-"
or with
-jnX, sin’0 _ 2
e ‘.\'.I-Jnxpzsine
"
X - jn(X sin 6 - 0)
-1 2 pl 2
D“nfo- Y Jn(nxpl) - 75_ f e sin"'0 d0 . (54)
-"

-19-



Now, the integral in Equation (55) is of the order 2« J’n-(nxpl).

Thus the second term in Equation (55) is of the order |n X le times
less than the first term. Since the approximation given by Equation (54)

is based on the assumption nxpz‘ << 1, we see that under this condition

the second-term in Equation (55) is not a very important one. Observe
that nxpz is of the order :f x:l << ] because we normally have pp« p.
in addition to xpl < 1, which is the range of validity of the present theory.
By comparing Equations (55) and (43) we reach the conclusion that
the effect of the nonlinearity in the initial condition [Expression (49)_] is
considerably less thaa that of the nonlinearities in the drift space. We

should, however, make a comment concerning the fact that Do # 0. From

the relation El = %-‘ “12)’1 and Equation (53), we find that there is a d-c
electric field,
2 ‘
. m2 1 1 pe
Eldc = --.—up 1'6 G:-:) B; (sin ﬁpz + sin 2 pps) ’ (55)

in the stream. The d-c potential disturbance becomes

2
v
vldc (3) = .Eldc dz = -é"-‘uvo Il'b (vi- (cou pps + é-coo prs - %) . (56)

Equation (56) shows that the d-c potential in the modulated free stream is

in general not equal to V  if the nonlinear effects are taken into account.

This implies that an electrode, for instance a demodulating gap, with a

d-c potential V oM distance 5, would in general disturb the stream even

at distances less than s, so that Vldc(l) is made to vanish at the demodulating
gap. We see from Equation (56) that only when = equals an integral number

of plasma wavelengths does the potential disturbance automatically vanish.
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V. SAWTOOTH-MODULATED STREAM

The main object of this section is to find a periodic modulation
function vlo(t) such that the electrons a.uocia)\ted with any given period
will arrive simultaneously at a plane ¢ = d <-{- in the form of infinitely
short bunches with infinite current density. Between the bunches the
current density is zero,while the average current density is io. The advan-
tage of such a modulation scheme is that one can convert practically all
the kinetic energy of the electrons into a-c electromagnetic energy at the
modulation frequency @ or at any one of the harmonic frequencies nw
(n=1,2,3,...) by the use of a demodulating gap at z = d tuned to the
proper frequency.

Let us consider the modulation period -w/w < t< w/w. Suppose
that vlo(O) = 0. The problem is to determine the velocity modulation
function vy o(t) in the given interval from the condition that the electrons
leaving the modulating gap during that interval must simultaneously reach

the distance d at a time d/vo. Now, for a given electron, s, one ob-

tains, substituting d/vo for t in Equation (17)

(Q_ R ’os
v v v
lo o o
- d-c -

os pr

. sin ppzo' (57)
d *os
The expression 5 v is nothing else than the time, t, when the elec-
o o

tron, s, left the modulating gap. Thus Equation (57) can be rewritten in
the form,

vlo(t)

P wt
o e
sin ’-f (-] ecl - wt)

-2]-

sl



which expresses the periodic velocity-modulation function we have been
looking for in the interval -w/wTtT w/w. If ﬂp << B we can write Equation

(58) in the approximate form,

RCI

t
o B WREE (59)

which is a sawtooth wave. If the velocity distribution in the bunch is
small, that is if vlo(t) << Vo the maximum conversion efficiency
will be approximately 100 per cent.

The Fourier expansion of the sawtooth modulation [ Equation(59) ] is

vlo(t)

2P GIP 6
v =‘.:_'E%;( A= sin nwt . (60)
2RE

The frequency spectrum of this modulation signal is infinite. It there-

fore cannot be conveniently produced if the fundamental frequency is in the
microwave range. However, it would be feasible to produce a signal

consisting of the first two harmonics in Equation (60), i. e.,

violt) .2, . 1
- =ﬂ_ﬂxzx'ﬁ (sinwt - 5 sinwt) . (61)
o e P

If we now calculate the fundamental frequency a-c current density
amplitude at a distance d from the modulating gap, the result would be
1.5 io' The maximum fundamental frequency a-c current density in the
purely sinusoidally modulated stream was 1. 16 io according to Equation (47).
The maximum efficiencies in the two cases are 75 per cent and 58 per
cent respectively. Both figures are obtained by extrapolating the theory
into the range past crossover. Significaptly, howevet,: these results in-

dicate that the presence of the proper second harmonic in the modulation

-22-



signal substantially improves the efficiency. Since a high-power klystron
produces a considerable amount of harmonic frequency electro-magnetic
power in the output gap, it would be conceivable to make use of this power
in the input gap in order to approach the desirable sawtooth type modula-

tion signal.
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ABSTRACT

The exact nonlinear wave equation for longitudinal space-charge
waves in a well-confined cylindrical electron beam is derived under the
anumptioﬁ of no electron overtaking. A procedure is developed, based
on the method of successive approximations, which makes it possible to
find the solution in the form of Fourier-Bessel expansions satisfying the
proper boundary conditions. In the present analysis the second-order
solution is obtained without any restrictions concerning the diameter of
the electron beam or the enclosing drift tube. The nonlinear part of the
solution describes the properties of the second-harmonic frequency waves.
In general the second harmonic contains linearly (with distance) growing
terms. The jrowth of the second harmonic has been experimentally demcn-
strated by Mihun.l The results reduce to those of Puchke2 in the case

of very thin beams.
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INTRODUCTION

The interest in the nonlinear behavior of electron beams has
become considerable in recent years. Many electron beam devices,
such as oscillators, are inherently nonlinear., Other devices, e.g.,
power amplifiers, are usually driven at such high signal levels that
linear differential equations do not predict their behavior very accur-
ately. Naturally it is desirable to develop theories for existing devices
with the nonlinearities taken into account, Furthermore, detailed
theoretical studies of nonlinear electron beams and plasmas may reveal
phenomena upon which entirely new devices could be based.

The present report is concerned with the nonlinear aspects of
the Hahn-Ramo wavels’ 4 (space-charge waves) which have been used
so successfully in the development of the microwave art, The differ-
ential equation for the Hahn-Ramo waves is usually obtained in the
linear form, which means that cross products be¢ween the wave quanti-
ties are ignored in the various expressions, The solutions have been
limited to low levels consistent with the linearising approximations.
The exact wave equation, however, is always nonlinear,

For infinitely thick beams the radial variations (and the radial
boundary conditions) vanish, and the oscillatory properties of the elec-
‘trons are entirely described by the wave equation. The nornlinear in-
finitely wide beam is therefore a comparatively simple problem., 5,6

However, the radial boundary conditions are of paramount importance

in connection with radially finite beams and have to be taken into account



II. THE NONLINEAR SPACE-CHARGE-WAVE EQUATION
FOR A RADIALLY FINITE BEAM

Consider a circular cylindrical electron beam propagating in
the positive sz-direction. The electron motion is restricted to the =-.
direction only, which can be achieved by applying a sufficiently strong
d-c magnetic field. The undisturbed electron beam is axially homo-
geneous, i.e,, the velocity, v o’ the electronic charge density, Py’
and the current density, i o(a Y o)’ are independent of &8, However,
Vor Por and i, may vary with r, the radial co-ordinate of the circular
cylindrical co-ordinate system (r, ¢, £). No asimuthal variation will
be allowed, i.e., 8/8¢ = 0. The undisturbed beam is supposed to be
electrically neutral, i.e., the ionic charge density is - P The ions
are assumed to be so heavy that they are not affected by a disturbance,

We wish to formulate the wave equation that,together with the
boundary conditions, governs the propagation of asimuthally symmetrical
disturbances along the electron beam. Contrary to the usual linearising
procedure, we will not neglect any cross products between the quantities
describing the distunbance.

Denoting the electronic current density in the presence of the
disturbance as io(r) + il(r, g,t), where t is time, and remembering
‘that 8/8¢ = 0, we obtain from Maxwell's equations for the transverse-

magnetic waves



9E

e ((H) =iy e, 5~ )
8H azr
TR TP 2)

o [ } s oH

r
Te - Tt Mo T )

where E(r, z,t) and H(r, 5, t) denote the electric and magnetic fields
respectively, while ¢ o is the permittivity and Ko the permeability of
free space,

From Equations (2) and (3) one obtains
2
° r Sz c Bt ¢

where c = 1/ Bty is the velocity of light in free space. Equation
(4) will be useful in connection with the boundary value studies. By

the elimination of H N between Equations (1) and (4), one obtains

8E 2 2 i .}

) 1 9 [ 1 8 9 1 =
- - - —— =0 . 5
2 3 [r \ F3 ’F)J (;z o ;';z)(.o 1\—) )

Ignoring relativistic effects,we can make use of Newton's equa-
tion of motion,
dzll
m — z-¢E_ , (6)
dt



where z, is the displacement of the electron under the influence of the
disturbance while m is the mass and -e the charge of the electron.
It is practical to write the final wave equation in terms of the
displacement s 1 Since l' can be eliminated from Equation (5) by
the use of Equation (6),it remains to express il in termas of 5.
The equation of continuity,

“l Dpl
wtw =0 M

is satisfied by writing

s
ilza-rlnd'ls'r ; (8)
) is the excess electron density resulting from the presence of the

disturbance. The quantity 8 can be expressed in terms of s, by the

use of the relation that defines il’ namely,

ip = (pgtp)lvg4v))-p v, (9)

where v, = dzll dt while v +v, = ds/dt. Using Equation (8) in (9),
we obtain

ds
[ ds @ 1
(n*x‘ ﬁ)s‘%r :

The operator operating on S is just d/dt. Integration yields 8 = Po5)

which is used in Equation (8) to obtain

Oll
S 3 (19)



and
8z

PL = =P Tz'l' ’ (11)

The elimination of E‘ and il from Equation (5) by the use of

Equations (6) and (10) gives the desired nonlinear wave equation

2
18 0 95 [y 92 $2)fdm 2 ) _,
O G T\ T el e | P!
(12)
The quantity ws is the anguiar plasma frequency defined by
2 ep,(r)
wylr) = - o= (13)

o

Equation (12), of course, is valid only when the disturbance is
such that z, is a single-valued function of =, that is, electron over-
taking must not occur. .Ii eiectrons with different displacements, say
Zip0 By o0 g exist ;imultaneounly in a given plane &z, then we

must use
]

8:1
i, = n
1 E Po ot
ns=

rather than Equation (10) to eliminate il from Equation (5), and the
problem becomes extremely complicated.

Equation (12) is a noniinear partial differential equation be-
cause the time derivative d/dt becomes nonlinear when expressed in
terms of partial derivatives.

Making use of the formula,
dsz
ool w) 5 ae



we can express the excess electron velocity v, as

ds, 83, -1 .
Vl = T s - TI'- 'l » ‘15)
while
2 -1 -2 -3 2
d'z os . bz 9 oz | "s
-d';zl-' (‘ﬂl) 5t (‘wl) " "1’2*(1'1‘:'1') (@) ;-zl-
) s
(16)
where
. a 0
| !(W v, ﬁ) 5
and

2 2 2
. 9 » 2 9
‘15(—:“ tv, gww t Ve o )'1 .
)

Thus the dot denotes the linearized time derivative.

If one uses Equation (16) in Equation’ (12) to eliminate dzzl/dtz,
the result is the exact noalinear partial dif.fonntial equation of our
problem. It is, however, a hopeless task to find such exact solutions
for the exact wave equation, which satisfy the Boundary conditions. One
is thérefore forced to deal with some finite order of accuracy. We will
limit ourselves to the second-order approximation.

The total electronic charge density can never become positive,
thus p  + p1< 0. By the use of Equation (11),one easily infers that
8:1/8:‘(1. Assuming 'hl/hlc{\n can write



8:1
1 - 5% =14

and obtain, omitting all terms of higher than the second-order,

d
_;t;l- =~ % talm) | (17)
where
Y
az) = gz E) +gg (5 (18)

denotes the second-order terms. Introducing the operators P and Q
defined by

p.1 ® 8
=T 5 TOF

@®

5

1 82 2
Ql--z- -— " ,
< (Ot .)

and using relation (17) in Equation (12), we obtain

(P+Q3E + Qu; 1, = -(P+Q)a(s) | . (19)

Equation (19) is the desired nonlinear wave equation of second-order
accuracy. All linear terms appear on the left-hand side while the right-

hand terms are nonlinear.



III. THE FIRST-ORDER (LINEAR) MULTIMODE SOLUTION

We will ignore the nonlinear part of Equation (19) in this chapter
in order to obtain the linearizeh solution of Equation (19). We shall need
this solution in the next chapter in order to deduce the second-order solu-
tion. The linear multimode solution is, of course, well known and the
reader is referred to the literature for a more extensive treatments’ 9
than the one given here.

From now on, we assume that the undisturbed beam parameters

i, v

o' Vo and P, are constants; i. e,, they do not vary with the radial co-

ordinate. We denote the linearized displacement by x and write from

Equation (19),
(P+Q)°:':+Q»:x= o . (20)

The exact solution of this equation is
(- )
x = Z A J (T, r) sin (Wt - v 5+0,) . 21)
k=1

It has been assumed that the disturbance is sinusoidal with an angular
frequency @. The propagation constants Yie! of which there exists an
infinite set, are determined by the radial boundary conditions, while the

amplitude coefficients Ak and the phase constants Ok are given by the



initial conditions. The radial propagation constants Tk are defined by

pz 1/2
Tk = hk I:___LT - 1] , (22)

(Yk' ﬁe)

where

1/2
b= (v - K2

By = wp/vo .

Be= w/v,

kozu/c .

Matching the radial wave impedance at the edge of the beam yields
9

an equation’ from which the various Yy can be determined, vis.,

J.(T.b K, (hb Kotha) 1,(hb
'I‘ b 1( k ) - b 1( )+ m 1( ) (23)
k™ 3 (T, b) K_(ha)

K_(hb) - !oi‘m I, (hb)

where b is the radius of the beam and a is the radius of the lossless
drift tube. Equations (21) and (23) include the electromagnetic transverse-
magnetic waves in which we are not interested. For the space-charge
waves we usually have 'Yk -p el << B, This means that we can write
h=p e and the right-hand side of Equation (23) becomes a known function.

We shall denote it by F(a,b, e). Furthermore, the propagation constants

10



Y, can be grouped in symmetrical pairs expressed by

Ykl 2 = pe + Rk“p s (24)

where Rk(i 1) is the so-called plasma frequency reduction factor of
mode k; Rll is the largest reduction factor, R, the nextlargest, etc.
Expression (21) can now be rewritten in the approximate form,

Qo
x -‘!Z Aklin (Rkpp' + 9.1 k) Jo(‘l‘kr) sin (wt - pe: + Oz k) ,
k’l ] 1

(25)
where
1 1/2
Tk o pe ‘;{ -1 ’ (26)
and
J. (T, b)
—~_ o Fa,b,B,) . @7

b ————
k
I, (T, b)

Extensive graphs for the solution R, of Equation (27) have been given by

10

Branch and Mihran, = while an explicit expression for R‘k’ valid for all

k, has been derived by Olving. 1

We will now assume that the beam is excited by pure velocity modu-
lation v‘l’ sin @t at the plane 2 = 0. Thus the initial conditions at the plane
£=0 are x=0 and %k = v, = v? sin wt. One easily finds that elksosezk.
The determination of A‘k requires the application of the Fourier-Bessel

expuuion.lz The result is

o o0 .
xs L} sin ot - B,5) ) = oin (R P 8) I (T,7) .
vo B; e Rk P o'k

k= 1 28)

11



where Tk is determined by Equation (27) while € denotes

J,(T,b)
ik /
‘"= 3 2 : (29)
Jo (Tyb) + 7, (T .b)

The normalized first-order a-c current density becomes

1 ] o o)
?lx = Povet = v—‘l:_e— cos (wt - P_=) Z x sin (R, B_5) J (T, r)
b P VoFp &R kPp® Yollk
(30)
The normalized total first-order a-c current in the beam is
i, 2wrdr
1, ’E 1x v"i‘pe . p )‘i e J,(Tyb) iR p)
= = COS (Wt -~ 2 — 1 5L L ]
1 v p e T,.b/2 P
° f iozmrdr °oP kgll; k /
(.
(31)

It is worth while noting that the significance of higher-order modes
is greater in Equations (28) and (30) than in Equation (31). This means
that the axial variation of the total a.c current may be essentially described
by the fundamental mode k = 1, while the description of the detailed dynamic
state of the same beam may require the higher-order modes to be taken into

account.

12



1IV. THE SECOND-ORDER MULTIMODE SOLUTION

The purpose of this chapter is to find the second-order nonlinear

correction term y to the first-order displacement, x. Thus we write

3, Txty (32)

where x, according to Equation (28), is proportional to the modulation
index v?/vo while y is supposed to be proportional to (v?/vo)z. 1f

one uses relation (32) and Equation (20) in Equation (19) and ignores

terms of higher order than (v?/ T o)z. the following norhomogeneous linear

differential equation will resuit:

P+QY + o; Qy = - (P+Qjaix) . (33)

The prcblem is now to solve this equatioz with ine initizl and bourdary
conditions taken into account. The function a{x) can be expressed by
the use of Equations (18) and (28) after multiplying the eseries ard after

some trigonometric marnipulationas, as

v° @©
a(x) = - i-(;%) pevi sin 2 (wt - pez)kzzm € Ii: Jo(Tk:r) Jo('rnr) .

[(znm -Ry) cos (R, - R )P s + (2R, +Ry) cos (R +R,) pp:] .

(34)

13
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The sum kzm is to be taken for all combinations between k= 1,2,3,...,®

and m=1,2,3,...,0. Thus to make this clear,

Z Lk, m) = L(1,1)+L(1,2) 4+ L{1,3) +... + L({l, ®)
k,m
+ L(2,1) + L(2,2) + L{2,3) + ... + L2, ®)

* ------ IR R LD R TR R R R R R L X X ] LEX X

+ L(oo, 1) + L{co,2) ¢+ L{(c0,3) +... + L{co,0) .

It should be pointed out that some terms,which should formally
appear in Equation (34), have been neglected on account of the condition

P

e Rkpp introduced already in Chapter III.

Now, both sides of Equation (32) contain the Bessel operator P,
indicating that the equation is separable provided the quantity a(x) can
be expanded in terms of linear Bessel functions, say Jo(Dnr), n=1,2,3,...,0,
instead of the products J o(‘l‘kr) Jo('l‘mr). Let us assume that the constants
Dn satisfy the equation,

J.(D_b)
Db 1'“n

v aE -

where H is a real constant independent of n. Equation (35) allows us to

make use of the Fourier-Bessel czpuuionlz

Jo('rkr) Jo(‘rmr) = il cn(k.m) Jo(nnr) . (36)

14



1
L I (Tyr) I (T ) I (D x) § d§
3 [Jﬁ (D b) + I (Dnb)]

By the use of Equation (36) we can rewrite Equation (34) in the

. (37)

‘;(k» m) =

form,
v° 2 © | |
alx) = - i- (..l) pevi sin (wt - B _s5) Z Z epkom) e o b T—
° n=zl jk,m m

[(ka -R,) cos(R -R,) ﬂp: +{2R_+ R,)cos (R + Rk) ﬂpl] Jo(Dnr) .
(38)

Since PJ (D r)= - D2 J (D r) and Qa(x) ¥ - (282 a(x), it is now a
trivial problem to find a solution to the nonhomogeneous Equation (33).
Furthermore, one easily infers by the use of Equation (4) that each term
{"mode") in the solution, characterised by its particular radial wave func-
tion J o(nnr), independently satisfies the radial boundary con&itions,

provided
D b ?—Tx( : = F(a,b,2p 39
n (D ) ‘ » Wy ‘) » ( )

where the function F is the expression on the right-izind side of Equa-
tion (23) with h replaced by 2p e’ Observe, however, that the various
J o(nnr) *modes” taken separately are not solutions to the nonhomogeneous

Equation (33), only the sum [i:quation (41)] is a solution.

15



Since F is constant and independent of n, Equation (39) shows
that condition (35), upon which the Fourier-Bessel expansion was based,
is satisfied. Equation (39) is identical to the equation that determines the
linear theory plumn-frequcnéy reduction factors of the different modes
n at the frequency 2w. Thus we can write as in relation (26),

D, = 2, (‘5’ -1 )l/z \ (40)

an

where sn is the linear theory plasma-{frequency reduction factor of mode
n evaluated at the signal frequency 2.
With these notations the solution to the nonhomogeneous Equa-

tion (33) can be written
y % ! p1‘- sin 2(wt-f s);: &c (k, m)ckc l
nonhom * v p n m K

§,0.m, 5} I (D1 (41)

where § n(k, m, 5) are the axial standiag-wave functions given by

2Ry - By
,m, 8) = cos - B s
§ (k, m, 5) m (Rop-Ry) Pos +
2Ry, Ry
5} - Byt Ry

cos (Rm+ Rk) ﬂpl . (42)
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The solution (41) will, of course, not satisfy our initial conditions
at the plane z = 0, The conditions are y = 0 and

. v°2
Viy = v+ % %—:— -i-vo v-!-) (co-z,.t-l) ,

if we assume that the beam is velocity modulated in an infinitely short
gridded gap at 2= 0. The veltage across the gap is V) sinut. If V_
is the d-c accelerating voltage, then \rcl'/vo = V?/ZVO. One can satisfy
the injtial conditions by writing

y=y ) + Y s (43)

where Yhom' solution to the homogeneous part of Equation (38), is
chosen so that the initial conditions are satisfied. One finds that Yhom’
has to be of the form of Equation (41) with In(k, m, s) replaced by

, z‘n"k Zl"}lk .

¢(k.m,:)=-1 T—-——tcouup:)i?-————?cos(lps .

. z sn'(ntn“lk) i n " Ryt By r
(44)

Thus the proper solution y becomes

lv‘; 'o 2 i | k 1 ¢ (kx,m, s)] I (D.7)
yai--v:- —-z-.in (Utrp,l) ) .ﬂ‘ Dm)‘k‘m c bt o'\*n

p‘ sl
(45)
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where

2 -
¢ 0eom, ) = § (km, 5) 44, 0k,m, 5) = & :m *x :
8p - Ry -Ry)

[couA(Ph- Pk)pp'

-cos snpp

2Ryt Ry
] Rt [ Hmt %'} |

(46)

Actually the solution (45) corresponds to the initial condition v Iy 0

and not to 2
i (vg)
vi,=% v |==| (cos 2t - 1) .
ly 4 "o Vo

This is due to the fact that the latter condition would produce additional
terms, which are of the order pp/pc times less than those present in
Equation (45). Such terms have been neglected throughout our work on
account of the assumption pp<<pg. Thus the significance of the modu-
lating gap nonlinearities is of the order pp/p o times less than the signifi-
cance of the nonlinearities of the drifting beam.

The normalizsed second-order a.c current density becomes

2

[ ] )
hy P W _[V1P 3
io PoVo Voap e :L;l k; "

oo Ri; ¢ 0m, =) | J (D7) (47)
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while the normalized total second-order a-c current in the beam is

i
IC)

vi Py
vopp

x*m

2

[+ )
cos 2(wt - B_12)
) € er

1
R

€., m, 2)

Jl(Dnb)

Dnb

2

g

kzm ] u(lu:, m)

19
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V. DISCUSSION

Equations (45), (47) and (48) represent the desired formal results.
Expressions for other second-order wave quantities, such as v ly can
now be easily obtained by the use of Equation (45).

The results do not reveal their physical significance very easily,
since they are expressed in the form of complex series. Further investi-
gations must be made numerically on the basis of specific cases. This
would include, for instance, a study of the lum:i \ in Equation (48) as a
function of = for some typical beam and drift-tube geometries. We hope
to return to this problem in a subsequent report.

However, some comments should be made concerning the axial
standing-wave functions, ﬁn(k, m, 8), expressed in Equation (46). First
we notice that ﬁn(k, m, z) is an oscillatory but in general nonperiodic func-
tion of 3 for any fixed combination n,k, m, while the corresponding func-
tion of the linear theory, sin (akp pl), is periodic. This means, for ex-
ample, that even if we limit ourselves to a lowest "mode" study (nzk=m=1),
the second-harmonic standing-wave pattern will not repeat itself periodic-
ally along the beam. The periodic stand-wave pattern is a small-signal
property which does not exist at large-signal levels when the beam is
radially finite. The wave functions ﬁn(k, m, ) can also be written in the

form,
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sin -;- (R Ry 8,855 sin F (R +R 48 ) B
% (R, #R, -5 )8 (R, +R 48 )

§ollom, 2)= 2R 4Ry )5 B

sin 3 (R, -R, -8 )P o5 %in 3 (R, -R, 48 )8 =
Rm'kk'sn Rm'Rk"'sn

+ (2R -R,)

(49)

Now, if Rm*Rk'sn" =], then Rm+Rk'sn ppz Zx/2 even for comparatively

large ppz. Under this condition,

sin % (Rmﬂlk-sn)bpz

1 « 1l , (50)
5 (Rm+kk-s n)ppz

and the first term in Equation (49) will contain a factor proportional to =.
The second term in Equation (49) will contain such a linearly growing factor
when IRm'R'k'snl‘ =] or Rm-R.ki»sn«c 1. However, the condition
'Rm*n‘k'snl =«]. is of partisular interest, because it will be systematic-
ally fulfilled when m = k=n3®2 and B_b%3 (see Olving“ Figure 40). This
is so because the plasma frequency reduction factors for the higher order
modes are approximately proportional to the signal frequency when the
beam circumference parameter p eb is in the practical range (43). Thus,
when m=k=n32, we will have R_ =R, ax 1/2 S, and the driving term
a(x), of Equation (33) will contain terms proportional to cos (Rm=Rk)pp:='
cos Snp p" Such terms are solutions to the homogeneous part of Equation
(33). Thus these particular driving terms are in resonance with the

natural plasma oscillations of the beam, which, as we have seen, results
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in a standing-wave pattern growing linearly with distance. The conclusion
is that the higher order terms, m=k=n™ 2, will be of paramount impor-
tance when § ps becomes large.

If the beam is thin enough, say f eI: <t ], and so short that the
growing higher-order "modes" can be ignored, then one should expect to
get an adequate representation of the series appearing in Equations (45),
(47) and (48) by including only the fundamental "mode" term m=z=k=n= 1,
Furthermore, if peb" 1, one has €, ]| '1“‘ 1) and J'O(Dnr)‘-‘! 1,

which yield

2
o
yed |2 %';ll— €, (1,1,%) sin 2t - B2 ,  (51)
° 8 1 1 e
)
where
3 1
TR sin (R,-x8,)p_s
2 1 1°2°%1Pp 1
£, (1,1, 8) = B .= . " . sin(R,+% S,)p_¢2
1 IR +8, 'P ®,-Ls)p s 172 51'%p
P
R
1 2.1
+;§- sin” (5 8, ppz) . (52)
Since S1 = ZRI, for thin beams one can write relation (51) in the
form
2
o
Y‘Tlg(:l- —f,—f l-cos(2R,p =)+
Yo| (r; By p
3R1ﬂpl lin(ZRlppl)] . sin 2(wt - pel) . (53)
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Relations (51) and (53) are identical to the results obtained and dis-
cussed by Paschke. 2 This proves that Paschke's generalized procedure
(see Appendix) for the use of the linear theory plasma-frequency reduction
factors at nonlinear levels is perfectly justified provided the beam is thin
enough, that is, peb << 1.

If the beam is so thin that the space-charge forces can be neglected,

that is R 1—-0 , then relation {(53) becomes

vO
Y o %(;%\) ﬁezz sin2(ot - B 2) (54)

which, as expected, is identical to the corresponding result of Webster's13
ballistic klystron theory.

Finally we want to show that Equation (45) is correct when the beam
is very thick, that is, ﬁeb >> 4 and Rk = Rm = Sn = 4. One immediately

finds that in this case
¢ (k.m,z) = sin’B z (55)
n 34

and
2

Z €, (k, m) ‘k‘m] J,(D,r) s[ch I (Tkr)] . (56)
ns k,m =

The right-hand side of relation (56) is the square of the Fourier-
Bessel expansion of the constant 4. Using relations (55) and (56) in Equa-

tion (45), one gets for the case of the infinitely thick beam,

=4 ﬁ 2 Ef- .inzp z - sin 2(wt - B_%) (57)
P
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Equation (57) is, as expected, identical to the corresponding result
obtained in connection with a study of nonlinear space-charge waves in
radially infinite beamas. 5 If we ignore the space-charge waves in relation
(57), i.e., if we let BE-& 0, we will again get the ballistic result in
Equation (54).
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V1. CONCLUSIONS

The nonlinear, nnnrelativistic space-charge wave equation (12) for
a well-confined radially finite homogeneous electron beam was deduced
under the assumption of no electron overtaking, no velocity distribution,
and no collisions. The first assumption is a serious one, since it does
not allow one to deal reliably with questions related to saturation effects
in very high-power tubes. In fact, overtaking is really the phenomenon

5:17,18 1o word "saturation” is used to describe

that causes saturation.
the situation where a small increase of the input drive yields no increase
of the output power,

Unfortunately the analytical description of space-charge waves be-
yond overtaking requires the solution of a complicated system of coupled,
simultaneous, nonlinear, differential equations. Apart from Wob-ter'|13
ballistic theory, the only analytical approach which allows overtaking seems

to be an unpublished study by Roe, '8

Roe's work, however, is limited to
the case of radially infinite beams. Some interesting computer results in
the region beyond overtaking for the so-called disk-model beam have been
obtained by Webber. 17,19 Thus one of the really important challenges of
the present-day microwave electronics is the development of an analytical,
nonlinear, finite-beam, space-charge wave theory in the range past cross-
over,

It is worth while recalling that our nonlinear wave equation, although
limited by the requirement of nonovertaking, is perfectly general in the

sense that it governs the low-level noalinear behavior of all kinds of
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O-type space-charge-wave devices, e.g., traveling-wave tubes, klystrons,
etc. The difference between the various tubes lies entirely in the boundary
conditions. The proper solutions to the wave equation would describe such
low-level nonlinear phenomena as the excitation of higher-order harmonic
and nonlinear fundamental-frequency waves, output phase shift as a function
of drive, d-c state of the beam as a function of drive, etc. In principle

one would be able to predict the dynamic state of the beam for any modulating
signal in the noncrossover region completely.

The purpose of the present report was to show that the nonlinear
space-charge wave equation can be solved with the ''conducting tunnel'’
boundary conditions (klystron). The attack was based on the method of
successive approximations and the use of proper Fourier-Bessel expansions.
The solution was worked out to the second order describing the second-
order harmonic (2w) under the assumption pp << p. . It was found that the
lowest ''mode'' of the second harmonic (and all lowest '"modes'' of the
higher-order harmonics) as a result contains, with distance, growing waves
when the beam is thin (ﬂeb ¢ 1). Higher-order nonlinear ''modes'' become
important in thick beams (say 1 < p’b < 3) because the lowest ''modes’’
associated with the various frequencies do not grow in the thick beam while
certain higher-order ''modes'' still do. Contrary to the linear modes of the
radially finite beam and the linear and nonlinear modes of the radially infinite
beam, the nonlinear finite beam ''modes'' do not repeat their standing-wave

patterns periodically along the beam. However, the plasma-frequency
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reduction factors, well-known from the linear space-charge-wave theories,

play a significant role in the nonlinear analysis,

It is finally shown in the Appendix that Paschke's recent thloryz' 7

is the correct nonlinear equivalent to the linear single-mode space-charge-

wave theory of Ramo., 20
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APPENDIX

The purpose of this appendix is to show that the nonlinear wave equa-
tion used by Paschke® 7 in its region of validity is in agreement with the
exact Equation (12).

Assume that the beam is so thin (p °I'.~<< 1) that the oscillatory
properties of the electrons at the center and the edge are essentially the
same. This means that radial wave functions can be ignored. Thus 5, is
a function of time and axial distance s only. Since overtaking is not per-
mitted, s i is a one-valued function. Furthermore, = 1 is periodic in
time provided the initial disturbance is periodic. Thus 5, can be expanded

in a Fourier series,

[+ )
5,(s.t) = Z z (59 (A. 1)
n=0

where z“ can be written in complex notations as

jnet - _3)
zw(-. t) = an(s) e . (A.2)

The problem is to determine the slowly varying functions a n(:)
with reasonable accuracy. For that reason one has to find an approxi-

mate wave equation for s 1’ independent of r.
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The exact wave equation is Equation (12) which can be written,

dzl

(P+Q)-T+Qu 5, =0 . (A.3)
at

If we use Equation (A. 1) in (A. 3) and ignore the radial variations (i.e,,
P = 0) we will get

z ( +u0 ) lm(l.t) =0 . (A. 4)

n=0

Equation (A. 4) obviously describes the radially infinite beam and not the
thin beam we are interested in. In the thin beam the effect of the fringe
field is extromoiy important and has to be taken into account. Paschke
assumes that this can be done by introducing plasma-frequency reduction
factors into Equation (A. 3) by writing,

S (.2
Y (“2‘ + RS u:) Z, (50)=0 ; (A.5)
n=0 |\dt

Rnw is supposed to be identical to the linear theory plasma-frequency re-
duction factor evaluated for the lowest mode at the frequency nw. Thus
o = 0, while Rl = R) and Rz“ = 81 in our earlier notations. Equa-
tion (A. 5) is a generalization of Pllchk. s Equations (4a, b, c) which are
limited to the third-order accuracy. The construction of Equation (A. 5) is
supported by the fact that it is definitively correct whea the equation is

linearized. However, one may question whether it is strictly valid in the
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nonlinear case. In what follows we will show that Equation (A. 5) can
indeed be deduced from the exact Equation (A. 3).
Let us write

d

2
[ Qo
1
= X (zt) ; (A. 6)

i.e., we expand the acceleration in Fourier series; xw is of the form

jnat - B,2)
xw(-. t) = bn(l)e . (A.7)

Since pp--p er We can expect the amplitude functions bn(l) to vary very
slowly compared to exp (-jn p .z).

We will now insert Equations (A. 1) and (A. 6) into Equation (A. 3).
) ¢4 ﬂ.b- 1, then both zw and xm contain a factor Jo(Twr), the
radial wave function of the lowest "mode" at the frequency nw (see Chap-
ters III and IV). The quantity Tnu is determined by the radial impedance
matching relation [see Equations (27) and (39):

'I‘wb ;L:_;_m_q;:_ = F(s,b,nB) ; (A. 8)
o' "nw

Tw is simply the linear theory lowest-mode radial propagation constant

evaluated for the frequency nw. Thus 'l:‘¢m =0 while T o = T | and

‘I‘zo = Dl' in our earlier notations. When p‘b <<] then Jo('rmr) =1,

while PJ (T, r) = - T .

We make use of the result P~ . T:; and Equations (A. 1) and

(A. 6) in (A. 3) to obtain



Q0
Z [(-'r:w -nzp:) X+ ("‘zﬂi u;) zm] =0 . (A. 9)

Collecting terms of equal frequency in Equation (A. 9) and equating to zero,

we get
2
. “p
xnu«} 3 Zw =0 , (A. 10)
T b
14 2
ﬂﬂeb

2
R, = ._(_T}_;T. . (A. 11)

Thus one has

X Roy 00 Zy, =0 (A.12)
or
a0
Z x +R* 2z )=0 (A.13)
) nw p nw '
n=0

which is the same as Equation (A. 5). Third-order solutions to Equation

7 14 1

(A. 5) have been obtained by Paschke, = Romaine, "~ Blair, 5 and Engler, 16
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ABSTRACT

This analysis describes the modulation and the electron bunching
processes of klystrons. The final velocity of the interaction region or
buncher gap is derived including the first.and second order effects of
transit time. The result is a final velocity which is an infinite series
of time harmonics, and the coefficient of each harmonic is a product of
Bessel functions whose arguments are determined by the physical and
operational parameters of the klystron. This result of nonlinearitiss.
shows that the gap-coupling coefficient is no longer a simple constant but
is a function of the amplitude of modulation and buncher gap width.

The nonlinear bunching process occurring in the drift space is
described by a nonlinear differential equation which is solved by the
method of successive approximations. The solution reveals current and
velocity harmonics which are nonperiodic in space. The higher harmonics
are dependent in part on the lower harmonics, and all harmonics above
the fundamental have irrationally decreasing amplitudes and periods.
The envelope of the higher harmonics grows. in amplitude initially with
increase in distance along the drift space. This instability can be inter-
preted as the parametric transfer of energy from the lower harmonics
to higher harmonics. By using an interaction impedance, a correction
to the usual computation of phase velocity of the fast and slow space-
charge waves is obtained. This correction causes the velocity to have
a minimum, never a null because the unequal amplitude of the waves
can never cancel each other. The current at the fundamental and harmonic

frequencies have the expected nulls, but are slightly displaced in space.

vii



INTRODUCTION

Since Wobltorl first described the bunching process of an electron
beam in a klystron, more and more accurate descriptions of this process
have been sought. This has been especially true as higher frequencies and
higher powers became more predominant. Because of these two facters,
the transit time of the electrons passiang through the interaction region
has become a significant limitation to the accuracy of theories of klystron
modulation which ignore second-order transit-time effects in the buncher
gap. This analysis attempts to describe more accurately the velocity
modulation process of electrons passing through the buncher cavity.

The transit time analysis does not include mco-éhar.o eoffects
because there is very little bunching in the interaction region; however,
any accurate drift space analysis must iaclude space-charge effects,
especially for large~signal operation. The bunching process of electron
beams is described by a nonlinear equation that is emtremely difficult
to solve. Puchkoz has used the method of successive approximations
to solve this equation; consequently, one can describe the spatial varia-
tions of convection-current density and velocity harmonics for a fintie
electron beam.

Although a one dimensional model of the electron beam is used,
this solution reveals several interesting properties of space-charge waves.
These properties have been verified by Mihnn‘ and others. This analysis
becomes very lengthy when used to calculate higher harmoaics, but can
always be used for any harmonic desired. The method is used in this
paper to extend Paschke's work to a third-order solution including the



third harmonic and connections to the fundamental in a finite beam. This
general method can be extended to more complicated beam models, even a
model allowing radial variations.

A correction to the phase velocity of the fast and slow space-charge
waves can be obtained deriving an interaction impedance used by Mclsaac
and Wang". This reveals shifts in current-amplitude variations with
space and time, resulting in spatially displaced current nulls and additional

phase shifts in the current components.
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. TRANSIT-TIME CORRECTION TO THE VELOCITY IN BUNCHER REGION

Symbols Used in This Section:
a Acceleration
e Electronic charge (magnitude only)
E Circuit field

m Electronic mass
t Any arbitrary time in the interaction region, such that t,Etst £
t, Time in the applied voltage cycle at which the electron enters
the buncher gap.
te Time in the applied voltage cycle at which the electron exits from

the buncher gap

u D-C velocity of electrons

ug Total final velocity of electrons

¥; A-C final velocity of electrons
Applied a-c voltage (accelerating)
D-Cbeam voltage corresponding to velocity u
off Effective voltage across buncher gap
s Longitudinal direction

s Electronic phase constant = «/uo

] Capacitivity of free space

n Ratio ¢/m

) Angular frequency of applied voltage (buncher cavity resonant
frequency)

3.



The purpose of this section is to describe the velocity in the buncher
gap or interaction region of a klystron, including the effect of transit time.
It is necessary that a complete theory involving the transit time consider
both a finite buncher gap width and a changing electric circuit field while
the electron passes through the interaction region.

The only assumptions made for the model of the klystron interaction
region are the following:

1. The electric field remains constant ovér the cross section of
the klystron beam.

2. No space charge will be considered within the interaction region.

3. The klystron beam will iu considered to be uniform and to move
in confined flow.

The model for the buncher gap used throughout the remainder of

this paper is as follows:

[=—suncreR ear —

a +E

N
\ N\ Z=d\

t, € t €
<

Yo

Figure 1. Buncher Gap or Interaction Region.
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From the force equation, the acceleration of an electron through

the interaction region can be weitten as
a=-nE =1nY coswt . (1)
cz d

Integrating the acceleration gives the velocity at any arbitrary time, t,

in the buncher gap as

u= a ‘a’, (linut - linot°> tu . (2)

In order to know the exact velocity of an electron at the end of
the buncher gap, it is necessary to express the velocity as a function
of the longitudinal distance, =z . Subsequently, the velocity can be
evaluated at the end of the gap, s:= d . One means of accomplishing this
is to integrate the velocity to give the distance as a function of time,
solve for time, and substitute for the velocity of Equation (2). Integrating

the velocity gives the distance as
=-3 Y - -1y -
s :} T <cosut colut°> + ( e | linato+u‘> (t to)
(3)

However, it is impossible to solve directly for time as a function of
distance because Equation (3) is a transcendental equation. One very
accurate approximation is to solve for t as a functionof s and coswt,

and substitute for wt as a function of distance:
wt = uto + ﬂ‘l . (4)

Consequently, the time can be written as

-.5.



al<

z+ -'li cos (mt° + pel) - cosutOJ
o
‘e T linuto + u,

Evaluating Equation (5) at z = d, gives the final time, tf . Substituting

Equation (5) into Equation (2) gives the final normalised velocity u,/uo as

u
nf « 1 | wd +% i—% [eoo (uto +p'd) - CO8 0t°]
- =1+ T sin hJ
u, Fd twt)| -sinwt ),
e u/1-8% 1 sinwt
° z p:z o
(6)
where
13V e 1 , (7)
u e qT=7 F?
and
P A
Vo

Equation (6) is an expression for the final velocity of the buncher
gap as a function of the entrance time and gap width, Consequently, onc:
the initial phase of the drive voltage, V , is fixed, the final velocity of
all electrons entering at that instant is determined. However, for
later use in this section, it is convenient to write the final velocity as
a function of the exit time of the electrons. Using half-angle trigono-
metric identities and letting uto = wt, - Ped : the variational component
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of the final velocity can be written as

éped"'# sin Gt-:s:-)

sin .
[
:!=§ 1*2?;.“1(0t-p.d)
u
’ Bl
2
B d
443 wafe -
cos| Wt -p.d + ’ (8)
1 +-:-;—‘; sin (wt -p.d)
e
where
Ped
e T
Y
-
2

From Equation (8) it is possible to expand the final velocity giving
an infinite series of time harmonics. This, however, is not as accurate
as the following approach where Equation (8) is used to calculate a
transit time; that is, the final velocity can be written as a function of
the entrance time and transit time through the buncher gap.

The final velocity, from Equation (2), can be written as a function

of the transit time, v, giving
ug = 3- % [sino (to +7) - linutc] + u, . (9)

The transit time can be defined exactly using the average velocity, u,

but the average velocity can be approximated very closely to %(uo + u!).

-T=



Thus the transit time can be written as

d d d (1)
Ty 1 u T+38
u z.(uo-o-uf) o
where
u
6=-;- _f
Y%

This § represents the correction to the average beam velocity,

u, , resulting from the modulation voltage. Substituting Equation {10)

into Equation (9) and writing in the form of Equation (8), yields

Ped [ 1
- '“‘[”3“- 6’}1’)]_ Ped (1 ]
it — Bed cos [“t-ﬁ.““z"' (m)
(1)

Comparing Equations (8) and (11) , one can easily see that § is approximately
g d
§ - -
§= T cosfut - = . (12)

It is worth noting that both the correction to the final time in
Equation (8) and the transit time will give the same order correction to
the final velocity. This accounts for the entrance phase of the field being
different, depending upon the time at which the electrons enter. However,
it is shown in Appendix A that Equation (11) can be adjusted to give a second-
order (or higher) correction to the final velocity, by replacing & with
TgT . Using the binominal expansion gives the final velocity



Yo 2 g d

2

Pe z]
i[T 1 -6+28 d
—£ . 1+= .n-'_ ( ) co.[m_ped#egl—(l -6"’282)]

(13)

This second-order correction represents physically the changing of the

modulating voltage while the electrons are passing through the buncher gap.
Substituting Equation (l?.) into Equation (13) , ne can-write thp final

velocity.as.an . infinite series of time harmonics whose coefficients are

Bessel functions. The series is of the general form

u .
-;f—o = a, +Zan cos nut +an sinnet . (14)
n
n

Within the limitations of the original assumptions, this series based on
Equation (13) will be exact throu‘li the third harmonic. The complete
series is given in Appendix B, but the main terms are

:—:sl-l'%‘iﬁ. -coo-z—J( %) ( 2&)

['“‘—z- LCT Sf.). 3cocTJ z@-—%‘) [‘.'f])]
.[colr'gi 10@1%9 ’1@3;- -"%)] °°"Q ] f;:_)



B d g d Ped 2 B4
S 32 . | - —
+[ cos == T <—‘z— %) A [%])] cos 3 ( 2)
(15)
Equation (14) can be reduced to Weboter'll ballistic theory for the

velocity by considering an infinitesimally thin gap; in this case, the final

velocity reduces to

u 2 3
ﬁ =1 +§ coswt - .‘n (1 + cos 2ut) + -:-4- (3 coswt + cos 3wt)

(16)

To best illustrate the effect that the correction to the transit time
has on the final velocity, an example is chosen for maximum driving con-
ditions for a klystron. Figure 2 shows the velocity as a function of
wt - -p-';- =¢ with a=1 and p‘d = 2 . S8ince the physical and ogorttionnl
parameters (or the klystron are specified, the series expansion[using
Equation (Bﬂhcomn one with constant coefficients. The first three
harmonics and their total are plotted.

The shape of the final velocity curve is basically a cosine wave
correction to the d-c velocity as shown by Equation (13). The decrease
in the d-c (average) level is caused by time variations in the gap-coupling
coefficient. The skewing of the sine wave (shift in maximum and minimum)
is caused by the time variations in the phase of the argument of the cosine
wave. One significant result of this analysis is tlut. the gap-coupling

coefficient has become somewhat meaningless because it is no longer a

constant, but a variable coefficient. In fact, it can be represented by an



infinite series of time harmonics, whose coefficients are Bessel functions
of p.d ‘and @, inthe same general form of Equation (14) .

To illustrate the skewing, it is possible to examine the rate of
change of the velocity. From Equation (13) the maximum deceleration is
found to be

B4
% 6*7 ?—) : (a7

while the maximum acceleration is

NESE

If the gap is reduced to sero, the acceleration equals the deceleration,
but if a finite gap exists, the deceleration is greater than the acceleration.
This is clearly shown in Figure 2.

«11-
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II. SPACE-CHARGE-WAVE HARMONIC ANALYSIS IN DRIFT REGION

Symbols Used in This Section

o

Transverse (subscript)
Longitudinal (subscript)
Direct-curreat (subscript)

P Eulerian polarisation of electron beam
E Total slectric field
J Convection current density
c
Jt Displacement (transverse) current density
P Volumetric charge density
) Relative phase of an electron beam perturbation and reference
microwave tircuit perturbation
) Initial relative phase of an electron beam perturbation and
° refereace microwave circuit perturbation
up Plasma frequency
uq Reduced plasma frequency
Bp Plasma phase constant
p Reduced plasma phase constant
9
R Space-charge reduction factor
3 ’m
=2
mn P

-13.



One method of describing the nonlinear behavior of electron beams
in klystrons is to consider the beam as a medium or fluid in which dis-
turbances or perturbations to the beam propagate. In kiystrons, velocity
modulation of the beam produces density modulation, causing space-charge
waves to propagate in the beam. The equation describing the nonlinsar
space-charge wave propagation can be solved by the method of successive
approximations developed by Paschke. 2

The assumptions made for this analysis are the following:

1. The one-dimensional confined flow (infinitely strong magnetic
field) model of electron beam will be used.

2. The electron and phase velocities are small compared to the
speed of light,

3. The longitudinal component of the r-f electric field is constant
over the transverse area of the beam; that is, the transverse electric
field varies linearly in the radial direction.

4. The effects of potential depression across the beam caused by
space charge and variations in electron velocities caused by thermal noise
are negligible.

Figure 3 shows: the model of a finite, one-dimensional cylindrical
beam in a cylindrical drift tube. The transverse displacement current
density per meter Jt represents the loss of current because of fringing
in a finite beam. This also accounts for the decrease in the loagitudinal
field l:. , and the longitudinal polarisation P. » the dependent variable,
is given by

Gzl

P' & ‘0 " ‘.‘—’;i‘-t- . (‘9)

-14-
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Figure 3. Current Flow Through Klectron-Beam Model.

Thus in the infinite beam case, the polarisation reduces to the loagitudinal
displacement D' » since there is no fringing. Usiag the fundamental con-
tinuity equation

v-ug..."‘! , (20)

one can define the palarisation such that

[ )
- 4 =

M J (24a)
P
- P (21b)

The continuity equation then can be written as

-ls-



2 2
8J 0 E [
Btowmw tHe 0 (22)

2
[
where the term Ts_‘ltt— represents the transverse coupling or fringe field,
Two additional equations are needed; one is the convection current density,
which is
J +J=(p +p)(u_+%) (23a)
o o o

J =p u ; {23b)

the other is the force equation,which is

du _ 8u ~
E-W-#(uc'#u)'i-tl-ﬂl. . (24)

Combining Equations (19), (22), (23), and (24), one derives the

following perturbation nonlinear differential oqution:z' 4

’p »’p P, 2 a2 op
2 +u —2J\ P + - ] P, +
22 o Bl = 13 Yo

ap) P zp’ .
+ e (3 'rlr“‘., ey ot

P ') OJ
(- 5) (R 3 o2 (7opmk) = -

(25)

The dependent variable is the polarization and is a function of space and

-16-



time and will have its value given as an initial condition. The second
dependent variable with which initial conditions are satisfied is the velocity

-2 . (26)

Equation (25) can be rearranged in a more meaningful form, yielding

o’p 0zp ozp
4 z

i
..2 uo ‘l’t \l ]

2 2 2
OP lP IP .P 2 ..OP. ..P. OP. 8 P.

2
TS * B¥ - ' \® ST BE,

w 2 P ozp P, P,
2 s
-3=2—R'P o '_, ( "1;1: 1;’1!"
(-]
2 2 2 2
» P "»P w 2 P
s . s .
*;z'" -:-.-) ] ’;"'z“ P, er) (27

where upz z 0 :—3 ,and Rx-9 = -:-9 . The fringing of a finite beam
is accounted for in Equation (25) by redufing the electric field as shown in
Equatioa (19), but {ringing is also accounted for by use of the space-charge
reduction factor. Consequently, in Equation (27), the following relation

’ 2
P -.;SRP . (28)
s s

-17-
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When the method of successive approximations is used, the solution

is assumed to be

PN R (29‘)

P =P +P
1 =z

+ P
g g g

2 3+

n' = u“ + ug2 + u.3 + see . (29b)

where P and u  are the nth harmonic solution of the polarization and
sn sn
the velocity respectively. The method is essentially one in which the solution

for P' is obtained ignoring higher harmonic solutions; then P“ is

1
obtained using P“ and ignoring higher harmonic solutions; etc. In this
case, Equation (27) is solved through the third harmonic. It is convenient

to write Equation (27) as a sum of harmonic components as

£1*£z+£3 ¢« s 0 = o » (”)

such that each in = 0 . This solution of Equation (30) is only one of many,
but because it satisfies the boundary conditions, it is the complete solution,
Substituting the solution of Equation (29) into Equation (27) and separating

by harmonics, one obtains

for fi =0:
ap L2 2P, , A oZp" ep 2B 0 ; (31a)
..z 'ﬂ;- st u o qi “=1
for £ =0
2
¥ P, + 2 ’P-z + 3 ’psz +p Zp _ 2 P4 :1-“’:1 8P,
s u_ 9zt u 2 o8 qd "s2° 30'\i° % Tk [ “Z
o
o
2 2 2
+ 2 8P, O P, - ¥ P,y .Psi -3 '”g R 2 P4
T~ \% o s s o9, ! si U= ’

-18-



2
DPZOP

'J"" - W - "r‘i"1"-'z4n“—+

2 2
(%Ps 2 P2 PP 3R, R, 0P, P, 0P,
ot el w® -:i-" B THR hE BR

»
ozp . W %P o’p e\’ |
[ ( ) 31 si L si ( 31>
Us RO ”2 .

: 2

wp Cp R, 2 P, w2 (P. ‘>

-3 B + P -3 P ;
o“o d s2 E o‘o 1 s 7

(31¢)
where $ ® and Rn are the space-charge-wave phase constant and space-

charge reduction factor respectively for the nth space-charge harmonic,
The corresponding velocity equations for each harmonic component
in Equation (29b) are

» (Pst » [Paa
u'1=-[n (—P-: +u°fu —::—] (32a)
P P
e () ok () ot ()
o
(32b)
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P P P
- =3 d (_s2 3 (_=1
o (1 () ek () ok G2 ()

(32¢c)
Py
where —— is the polarization displacement,
o
The remainder of this section will be used to describe a general method
of solving Equation (31) and the solution through the third harmonic will be
presented. First of all, Equation (31a) must be solved for a homogeneous
first-harmonic solution. To obtain a solution for P . satisfying the Equation
s
(31) and boundary conditions, consider the second total derivative with respect

to time of a function of time and space, in operator form, as

2 2 2 2

d [ 9 I

— N e [ 3
3 3 + 2u =R +u —z’. (33)

a8 2
.Lz....d_.p +p P =0 (34)

Equation (34) is in the form of an undamped oscillator equation,and an assumed
solution, which will be shown to satisfy all boundary conditions, is in the form

of
P =TF (s) cos(wt - B ) (35a)
s1 | e
where
J
) (s) = -;2; % oinpq‘i . (35)

When one uses the time-varying argument in the form of (wt - ﬂ.s) for either

sin or cos time variations, one simplification is

d . L

«20-



for n = 1,2, .... Equation (35) must satisfy two initial conditions:

(4) p“l =0
, 520
(36)
[ )

(2) u‘ = I .

‘I

t, s=0
Next, Equation (31b) is solved most easily by substituting .P. X in

the form of Equation (33a) into the drive terms of Equation (31b), simplifying

them into the form of

G (s) +G (s) cos2(ut-p 8) + G (s) sin2(ut-p ) ,
° 1 e 2 .
(37a)
where the functions G(s) are in the general form of

a, +a coczp“l + bz sin2 ’q‘l H (37b)

2

2 and bz,an comstants; that is, functions of the second space
harmonic of the fundamental. 8ince the drive terms are in the form of

where a , &
o

Equation (37a), the solution for P'z must be in the foliowiag form:

P“ =z go(s) + l‘(l) cos Hut-l.t) *lz(l) -hl(ut-l.l) . (38)

Substituting Equations (37) and (38) into Equation (34b) gives the solution

for P.z in terms of the deive:terms as

2
L z z s .
d.z . (») + D‘z 'm(l) ‘m + bm cos zpq‘s + cm lhl'q‘l .

(39)

where am. bm. and t:m are congtants, and m = 4, 2, or 3. Equation (39)



is an undamped oscillator equation with drive terms in the form of
constants, sines or cosines, The solution to this type of equation, 5

for the case where P 2 # 2p , can be written as
q qi

a m S°° 2p sin 29

1!
g, - m p q‘z" “'T_JT ' (“0)

Thus knowing the drive terms, one can write the particular solution of the

second harmonic polarisation, P immaediately.

s2p
The complementary component of P. 2 is necessarily coatained in
8,(z» because of the form of P“ » and is
= '
gi(z) '1(’) + g‘ cos pqzs + & linpqzs , (41)

where 8, and ‘b are two arbitrary constants determined respectively by
the boundary conditions:

P, = 0 such that s, =8 1(0) -8 1'(0) ,
. 8=0
and
2
u ol suchthat g +u = -3 .
z2 T ‘b s2p &
t, 2=0 t, z=0

Finally, P__ and P_, can be substituted into the drive terits for
Equation (31c), Then following the method outlined above for solving P’z .
the third harmonic, l:-"3 » can be obtained. This will give correction terms
to the fundamental in addition to the third harmonic terms.

In general, using the fundamental, homogeneous solution in this form,
the higher harmonics can be obtained in consecutive order by using the

-22-



following approach: (In this case the nth harmonic is used instead of the
thizd harmonic to illustrate the general method.)

A. Simplify the drive terms of the next (nth) harmonic by substituting
for the (lower-order) deive terms the general form in which all the polar-
isation terms can be written; that is,

l="1 = 11(:) cos (wt - p.l) ,
P,=8l(s)+g (s c«uuc-p.--n 'z*" sin zu.p.-) .

P.(nd) = ho(s) + hi(-) cos (n-1) (wt - p.s) + hz.(.) sin(n-1) (wt ",.')

(42)
The expression for each harmonic of P_ comtains ouly the largest magnitude
terms; actually each odd harmonic P. contains all lower odd harmonmics,
and each even harmonic P. contains all lower evea harmonics and & d-c
term. In any case, substituting Equation (#2) into the drive terms for Pnn
harmonic reduces the drive terms (main terms only) to .

Io(l) +1 ‘(l) cosnut + 1 z(l) liénwt R (43n)

where every term in the coefficients lo(') A | i"’ , and lz(l) must be in

the form of
L + % 'n coonp‘ml + f‘ bn .innpqml R (43b)
where
n=0,2 464 ... forevem P .
sn
and

u.‘. 3. 5. ceve “'*P .
n

-23-



In general uals all combinations of 's suchas , s ss0s H
gene qu oq c o Pq u ’qa‘ qu Fq3 Pqn

P

Bua 2oy PoaBoyr ooer Py 2B o0

b4 x ’ x 0 coey L 3 H
Pq‘ qu pq3 Pq‘.t'qz Pq‘ ﬂq‘iﬂqz pq(n-S)

pqii’qztpqaicoo t’q‘n-r, where nt(i+z+3+... +r) .

However, the largest terms of the higher harmonics are dependent on the
first harmonic, so generally oaly the pq 4 variations in space are kept.

The second largest terms are dependent on ’q?. variations; the third largest
terms are dependent on ’q3 and pq N F 3 pqz variations, etc. The complete
l’.n harmonic will contain n '‘orders'' of magnitudes of terms.

B. Because the driving terms of the undamped oscillator equation
are in the form of Equation (43a),the solution, as in Equation (42), will be

P’n = io(l) +1i ‘(I) cosn(wt - p.l) + iz(:) sinn (wt - p.:) . (44)

Substituting this into the oscillator equation shows that the time variations
can be separated out in every case and the drive terms are always in the
form of Equation (43h). The complete particular solution P.n’ is obtained
by superposition of the individual terms and can be written by inspection
from the drive terms shown in Tables I, 1I, and III.

-24-



Drive Term a a_cosnf = sinnp =
o n qm qm
Solution -:ze- —z—tn1—r cosnf S -7-—‘-’-‘1—!—- sinnf =
p p° -n"p em | p" .n'p gm
qn qn qm qn qm
TaBLEL p - a’ pl
a " o Pam
Drive Term a cosP s bn sin pqn'
Solution i sinp s " -’3— cosP s
L TP
2 2
2 n 2 2 n 2
Pem 22 Pea Pam ™ 2 Pan
Drive Term a s cosp s bssinp s
n q
Par® 2 Pam®n 2
Solution *.-—:F—‘-!- s sinp s - _2&2!' s cosPp =
3 +p 38° +p
qm 4§ gm qn




Table I gives the solution for the case when the driving frequency
is not equal to the natural resonance of the oscillator equation, and Table Il
gives the solution for the case when the driving is equal to the natural
resonance of the oscillator equation so that the growth of the term is linearly

increasing in space toward infinity,

C. ThusP is of the form
znp

Plup = io(u) + 4 1p(') cosn(wt ~ p.l) + iz(l) ninn(ut-'.n) . (45)
The arbitrary constants must be added to Equation (45) before the complete
solution of Equation (44) is obtained. Because of the initial choice of the

cosine time variation of P’ » the two arbitrary coefficients are contained

1
in the coefficient of the cosine term. In order that the initial conditions be

satisfied, the coefficient of i ‘(s) in Equation (44) in terms of i ‘p(s) in
Equation (45) and the arbitrary coefficients is

i‘(:) =i ‘p(z) + i ta cos ’qn' +1i ib -inpqnz , (46)

where i, and i, are arbitrary constants, Using the knowledge that

1ia 2b
P =P + P , (47a)
sn snp snc
and
u =u +u . (47b)
zn snp snc
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where the subscripts p and c refer to the particular and complementary
solution respectively, one can use the initial conditions to determine the

arbitrary constants, The two initial conditions are:

(1) P. = 0 for all time variations. Coasequently
5=0
=0
sn
s=0
resulting in
i e 10(0) -1 11:’(0) (48a)

(2) From Webster's theory fur the velocity [from Equation (16)]

2 3 2 3
;-:— 3(‘ -%‘) +(% +%) - %‘ + h eee o
=, t=0

Consequently u_ is the coefficient of the nth harmonic of the

L, t=0'

velocity, so that
i, = 25 (0 48b
1b = “sn - r_n & %4p * (48b)

s, t=0 q

Comparing Equations (46) and (47) one can show that

d 4
r. 3 i‘p(l) * ¥ Pnp .
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D, After the two arbitrary constants are obtained, Pzn can be
written and Ps(n+1) harmonic can be solved in the same manner. This
successive approximation is straightforward, but becomes extremely
lengthy for higher harmonics.

The solution for the polarisation, P‘ » through the third harmeonic,
keeping only the largest (highest order) terms is given in Equation (49).
From Equations (32) and (49), velocity is given in Equation (50), and from
Equations (21a) and (49), the current density is given in Equation (51). In

Equations (49), (50) and (51), the following ratios are used:

Pqi1 .
q2

W
-
w
[ ]

f2 C $43 ° ‘ ‘23

£
w
v
w

10 o7 defined in Appendix C.

The Equations (49), (50) and (51) are necessarily lengthy and

The constants K " K

complicated because of the harmonic variations and are more easily
represented graphically, The harmonic content of the velocity and the
current for a typical finite beam are shown in Figures 4 and 5. The

typical beam case was done for the S8AL-36 klystron.
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Two special cases of the polarization, velocity, and current given
in the last three equations are interesting to examine, The first is the
special case of the infinite beam (or infinite frequency); that is, the space-
charge reduction factor for all npace;charge harmonics becomes unity.

Consequently, 1, and the polarization velocity and

1278437 655"
current reduce to the following:

P = -
z o

Cy

% w-i—- -inppz cos (wt - pel)

)
+ .J_° (“)z w 1 -cos2p z| sin2(uwt -p =
4 Z w & P e

P
+J° (“)3 o? 3|-8in3f 2+ 3sinp 5| cos3(wt -p =)
32 \2 F P P e
P

+ [- sin3p = + 3 sinp z] cos (wt - B_s5)
P P ¢

(52)
u
“—: =14+ (%) conppz cos (wt - P
.4 (‘)2 2. sin2p = sin2(ut - P =)
T \2 up P ' e
2 2 [ ]
+ ’12-, (%)' (;9.) -5 L-- cos 3pps + coupps- cos 3(ut - p_s)
i T
+7 |-cos ”pq + cos ﬂpl cos (wt - P")

(53)
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st sinp 5 sin(ut-p s) - 5 (“); o : [i-col 2p -] cos 2(uwt-p_z)
TO- . Z (dp P e H z “p P e

+ 3'12' (%)3 (ﬁ.“.)s 9 [- sin Spps + 3sin pps] sin 3(¢_ot-p‘z)
P
+ [- sin 3pp: + 3sin ppl] sin (ut-pez) (54)
Equations (52), (53) and (54) can be further reduced to Webster's velocity
and current series, 1,2
The other ;pechl case is the opposite situation which is that of an
extremely thin beam (or low frequency); that is, the space-~geduction factor,
while having an extfemoly small value, is directly proportional to the order
of the space-charge harmonics. Consequently, ¢ 1'?. = %. ¢ 13° %, and
623 = % » and the solutions tn Tables. II.aad III must,be used. . The polarisation,
velocity, and current density are rapidly growing functions in space and
reduce to the following:

P. = -Jo % 5'1_ .inpq‘z cos (ut-pez)

(

qi
+ Jo(%)z (::—'-1-;) (& Pas® #1n28 5 sin2(ut-p s)

z .
a 1 5 2 2
5,8 (%) \[ﬁz*w« ) s
{ 5 s 2 2
+(-2-qu1 I) linﬂq‘l] cos (we-p_z)

3.4, 2 2
+\+3 Tqui ] -mpqis COO(M'P")

(85)
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-_— = 1 +;- colﬂqtl conl(ut-ﬁel)

2
+ %) ‘.»..‘L ‘ [-:- pq‘z coanqiz 'i“z“""’e”“l

qi
a¥ (o (2,18, 2 2)
-(z) <;;;_;) 3 1z pqi g | cos ”qi’

+(_ ;_ 15‘_ pqiz ,3) coOPq‘l] cos 3(wt - P‘l)
+ [(-; + .&.pq‘z .z) cos ”q‘l

+(-% - .:'lq‘z l_z) cOIQq‘I] cos (wt - ()

(56)

1
2 [
+ (%)z (ﬁ'::) | ﬁ» 'qi. """qa' cos 2(wt ~ ’.l)]
\- -
3 3 2 2 o
+(§) (::L‘.) { L(-% + -}z pq‘ s ) lin”q‘l

(- ‘419_ ) 'H' .“z .3) .ta.‘f] sin 3(wt - B 3)
2 2
+[(- % + T‘t 'qt l) liu”q‘l
2
Q% ) ‘t_‘ .q‘l s ) lhl“l] oin (wt - ..l)'

(57)
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Equations (52) through (54) and (55) through (57) are also lengthy
because of the harmonic variations. Consequently,Figures 6-9 are presented
showing the harmonic content of the velocity and current for the infinite beam

and the thin beam cases.
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III. CORRECTION TO SPACE-CHARGE PHASE CONSTANTS

Additional Symbols Used in this Section

{ Interaction impedance; it is the ratio of the electric field
at point m caused by the current at point n .
A Normalised space-charge wave correction for the nth space-

charge wave harmonic.

In the previous section, the space-charge wave variations in dis-
tance were obtained by solving a linear, undamped oscillator equation
(Equation 31). This produced a fast and a slow longitudinal wave whose
Phase constants, f_ + pq,n, are slightly larger or smaller than the fast-
varying electron beam phase constant, B, - Consequently the beating of
the fast and the slow waves produced a (fundamental) solution of the

polarization and current, which was shown respectively to be

P =7.£ ( )-inp xcoslet-Bs) (58)
.l Jo o 2') -inp s sin(ut - B, s) . (59)

From Equations (19) and (28) the longitudinal electric field can be

written as
g =1 o (e sinp =z cos(wt - s) . (60)

The ratio of the electric field to the current for the corresponding
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e“‘t B p") terms of either the fast or slow space-charge waves, is an

impedance, { , and from Equations (59) and (60) is written as

sl

{ == =

J 61
J:l Com 1)

This shows clearly that the impedance does not depend on whether the

fast or slow space-charge wave is being considered. This is approximately

correct, but is not true. In the remainder of this section, the correct

expression for the impedances, dependent on the phase constants of the

two space-charge waves, will be shown. This work is based on an

article by Mclsaac and Wangé.
In fundamental electromagnetic theory, the electromagnetic fields

can be expressed in terms of a certain distribution of current sources.

If a wave guide has simple boundary conditions, as for example, a

cylindrical wave guide, the total electric field at a point, m , is a

summation by superposition of the electric fields produced by an indivi-

dual exciting current ray in Figure 10. Consequently, if the current

DRIFT SPACE Ept 1)

NN\ \(DIELECTRIC) BEAM
EEETRTR=®=

e A

Jn(Z: 1)

Figure 10. Electric Field and Current Representation in Drift Space.
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distribution in the wave guide can be representead by a summation of
current rays, or delta functions, the total electric field, at a point, m ,
is the integration of the products of each delta current and its response
function.

The integration for this interaction theory of current and electric
field is, in general, c.mplicated, but the specific case of a drift space
is relatively easy. It will be assumed that the cross section of the drift
tube is constant in the longitudinal direction, and the beam can be con-
.id'erod as a dielectric in the drift tube. Both the electric fields and the
currents will be varying exponentially in time and space. The circular
frequency, e , is constant, and the phase velocity of the curreants must

be very close to the phase velocity, p_, of the electron beam, since

°
strong interactions exist among the currents. Let the total phase constant,

f' ., equal the electron phase velocity plus a correction term, f , such that

I (mt) = .rone“"t - p's) = Jno“"‘ - Pg® , (62a)
and

E_'(s.t) = l:omo-“‘“ -p's) nm.“"‘ -Ben) (62b)
where J, and tq ate slowly varying functions of s such that

J=e -jps ) (63a)
and

E_=e -ips - (63b)
where

B'=B,+P and p << p,
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A differential equation describing the interaction theory can now
be written and solved revealing a more accurate value for the special
variations of the electric field and current. In order that Equation (62)
satisfy Maxwell's equations, the electric field at point m caused by the

current at point n must be directly related as follows:

E =it (el (64)

where the fast variation ej"‘t - ﬂ.z) has been canceled. The important
detail in Equation (64) is that the impedance, Lmn(p‘,u) is a function of
B' . the total phase constant, not just B, . This means that points m and
n must be relatively close to each other because ‘mn (B', w) varies in
space. However, the closer the points are together, the more accurate
Equation (64) becomes, when a single value of ‘mn (B'w) is used.

For the most convenient as well as most accurate form of
Equation (64) , the point m will be the same as point n .. Thus the
electric field will be evaluated at the point at which the currents act,
and the impedance becomes a driving-point impedance. Thus Equation

(64) becomes:
E =ila (7 . (65)

The slow variations of the impedance can be more easily studied
if separated from the fast variations. This can be accomplished by
expanding the impedance in a Taylor series around p. . By using only

the first two terms of the exapnsion, Equation (65) becomes

8¢ (B, )
En=j[;m(p,.~)+j :" : p] I, . (66)
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Taking the derivative of the current from Equation (63a), we can write

the slow-varying phase constant f§ as

dJ
pz- 8 L (67)
dz Jn

Substituting Equation (67) into Equation (66) , eliminates the slowly varying
B ., giving the following differential equation:
(] ‘nn p o' ¥ d7J n

E =ji ’ - . 68
=i, (B @) T T = (68)

From the continuity equation in Equation (21a) , the slow-varying

polarization, :Pn and normalized current density are related as follows:

J R
T =8, (;f) - (69)
Substituting Equation (69) into Equation (68) yields
E P L P
n n nn d n
=2 =.¢ (-— -jp, =22 £ (2 . (70)
Jo nn © 'o > e dp o ds ( po )

From Maxwell's equation,

oD
YXH=J + 3+ n
c | 8t | (71)

the maximum impedance occurs when VXH = 0 and is

- 1
‘nn(max) - e, ’ (72)

The ratio of impedance at point n to the maximum possible impedance at
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n is then ‘nn we This is also the ratio of the space-charge field to

o .
the maximum possible field at the point n, which was defined in the pre-
vious section in Equation (27) as the space-charge reduction factor. The
impedance, in other words, also describes the decrease in the space-

charge electric field caused by fringing and is related to the reduced

plasma frequency as

{ we_=R"=_9 . (73)

From the force equation, the ratio of field to d-c current density

can be written as

2
Fa uo du - d
— = 4 . (7‘)
VLR E
where
sy o @ -P'S) _  Jlet - Bes)
o n
un = uoe el ,
and
u
wsz 2
ug

If Equations (73) and (74) are substituted into Equation (70), the impedance

is eliminated, and the interaction equation can be written as

2 /p 2 P
%‘." = - ES 2 )+ ip, 2 5‘1 d (a)l . ()
s Pe Po °p, Pe d= \ ¢o
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Using the simplification made in Equation (35¢c), gives the relationship

between the normalized slow-varying velocity and the displacement as

P .
w4 (76)
dz Po

‘Finally, substituting Equation (76) into Equation (75), one can write the

interaction equation as a function of the displacement as

£(2)n () 4()- (9 (B

)

Equation (77) is an undamped oscillator equation very similar to Equation
(31) , but differs in that it has an additional phase-shift term proportional
to the first derivative of the polarization, which is the vslocity. This
imaginary phase-shift tarm can be used to represent the energy required
to supply the Poynting power flow associated with a bunched beam in the
velocity modulated klystron.

5

Using any of the common methods” for solving the oscillator equation,

Equation (77),0ne can write two solutions as

P J Pon \°
=58 (41 \/ 1 &= ,
&) p= e (3 C-f-i 142 C (Pe (78)
where 2
(f:';
Olnp.
Olnp. )

The subscript, n , is the number of the space-charge wave harmonic.
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oL

Figure 11. Variations of Components. of 4)  versus Be

In order to see how the 42 solutions vary with p. the cuxves in Figures
11 and-12 are hclp!ul.

From Figure 11, it is clear that C is always a positive quantity.
Consequently, the quantity ;-C EE =a in Equttién (78) can be drawn
from Figure 11 to be as illustrated in Figure 12. Thus Figure 12 shows
that An reaches a maximum at about P, = 1000 radians per meter and
is sero at sero frequency and at infinite frequency. The energy required
to supply the Poynting power flow is proportional to ‘n .

The solution, Equation (78), can be written in terms of a correction

to the space-charge wave harmonic as
. V 2
pqnt"qn(i 1+a +An) ' (79)
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Figure 12. An versus p°

where plus and minus refer to the slow and fast wave respectively. The

phase velocity, vp » is written as

+
vl’sp.sip;:‘%(l?’i‘_ ) : (80)
‘But pqn+ is slightly larger than pq , and pqn- is slightly smaller than
pqn . Consequently, both the slow and the fast wave are moving slightly
slower than they were in the solution in 8ection II.

The exponential form of the two phase constants, ’qn: , can be
reduced to the form of a correction to the polarisation solution, P. , in

Section II. From Equation (49) , the form of the space-charge wave

harmonics is

(. . . .(8la)
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Applying the correction of Equation (79) to the above spatial variation,

gives the corrected spatial variation

sin | 1/""—2
con m "1+ An pqnz (cos An pqn: - j sin An pqn') . (81b)

However, Figure 12 shows that A is small compared to one and Anz
would be negligible compared to one, so form (81b) reduces to the following
form

sin

con ‘m pqn. (cos An pqnl - j sin An pqnz) . (81c)

As An app:;oachon sero, form (8lc) returns to form (8la), which must
be the case.

The form (81c) , when used to correct Equations (49), (50), and
(51) yields the following results for the first two space-charge wave har-
monics for polarisation, velocity, and current density:

J. ,
= .. % (e
le = o ('2') sin pql' cos 6'

2
-J ,.“ (%) - 8in20 + —_32_-. coozpql:linze'
“q2 4@ !

i -
+ nz conpqz: sin 0"
4§lz -1

sin ﬂqz: cos 0" ] ’ (82)
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where

0 z=utvp s

e
0' = wt - (ﬂe + 4, ﬂql)lze - A pql'
8n=2.t-(2'p‘+azpqz)z=26-Azpqzz ;

u
z
— =] +!_ - 3 3
o 2 Czou pql' cos @' LY smpqls lm0>

6¢
2 ___._ - 12 2 20 ) 20
-0-(4)z “qz [ 4&122 ) (lin pqlz sin20' + Al colzpqlz cos 2

)
2
t conlpqls (cos ZA1 pql‘ + cos20'

Al

1
20"+ : 2 '
*;lz -inzpqls sin26' + T;z (1 + cos pql') (1 + cosd @)

+ '-‘-32- (1 +cos2p8) (1 + co.ze)

4(6,5° - 1 ing" e")
- -:-el——z-i—.—-l— sin ﬂqzl sin + Az cos ﬂqz cos
r
5 - 8512 “ ]
+ 2 e ; (83
‘_ej;z_._;. = colpqzs cos )
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= -..‘_"_i'. sin B gy sine'

“a1

o{.

+—‘1"-z (‘)z 2(cosze + 6 2p_,% cos2 @'
A R i el

Bﬁcmp scoub)
4 2.1 0 ¥

12
é W
+ — AL sin2p s sin2e
4,,° -1 ¢ 1

5.-8¢,,°2
- _____512 ‘2 sinpqz:line" (84)

2 (1)
4,," -1

The Equations (82), (83), and (84) are complicated and are presented more

conveniently in graphic form. The velocity for the first two space-charge

wave harmonics are given in Figure 13.
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CONCLUSIONS AND RECOMMENDATIONS

In Section I, the electron transit time allowing for a changing electric
field was described. A second order velocity correction was expanded in
Appendix B,giving the final time as an infinite series of time harmonics.
Since the transit time was obtained by averaging the transit times for initial
and ﬁml'velocity. the analysis is quite accurate for transit angles less
than w/2 radians. Figure 2 clearly shows the skewing of the conventional
sinusoidal transit time correction caused by the higher harmonics. This
skewing represents the effects of the transcendental relation (Equation 5)
betwe@n distance and time in the interaction region. Because the final
velocity is an infinite Fourier series, the meaning of a gap coupling
coefficient must be changed; it can no longer be considered a constant,
buta function of modulation and buncher gap width.

In Section II, the nonlinear bunching process in electron beams,
including space charge effects, is solved for finite beams by the method
of successive approximations. The two special cases of infinite beam and
thin beam give the two extreme conditions of the general solution. For the
infinite beam case, Figure 7 shows that the peaks and nulls of the current
harmonics occur at the same point, and nulls are always separated by the
period of ppz = w . Moreover, the amplitudes for each harmonic are
constant with distance. For the thin beam case, Figure 9 shows that the |
peaks and nulls of the nth harmonic occur in n-multiples of the fundtmcntai
period of P ql' = w , and the amplitude rises as (n-1) power 6! distance.
The growth of the higher harmonics physically represents the parametric

transfer of energy between the fundamental and the higher harmonicas,
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Although the higher harmonics grow at an increasingly faster rate with
distance, they saturate at a decreasingly lower amplitude, In the limit
of the thin beam case, all harmonics continue to increase until they saturate.
For the finite beam case, Figure 5 shows that the period of the
current harmonics decreases irrationally while the amplitudes of the
peaks initially increase with distance. They are expected to fall and rise
in a nearly periodic manner. The initial rise of the peaks has been experi-
mentally verified by Mihran®. Both the irrational decrease in period and
the harmonic growth are caused by combining the particular solution
whose spatial variations are functions of the plasma phase constants of
the lower harmonics, and the complementary solution whose spatial
variations are functions of the plasma phase constant of the harmonic
itself,. The plasma phase constants are dependent on the space charge
reduction factors of the n harmonics. Moreover, any one harmonic can
be eliminated by varying the transverse dimensions of the beam, by varying
the transverse dimensions of the beam, the a/b ratio, the u/uo ratio,
or the location of the output cavity in order to operate the cavity at the
position at the spurious harmonic current null. However, Figure 5 shows
that for a fixed transverse geometry this is not the mont.em.cient.opd}ation
of the klystron, because the minimum of the higher harmonic may not
occur at the maximum of the fundamental. Figure 15 shows the changing
of the null position of the second and third space charge harmonics by
varying the beam diameter, the a/b ratio, or the m/u° ratio,
Harmonics can also be eliminated because they are the sum of

a forced (particular) solution and an arbitrary (complementary) solution.
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By driving the klystron with a signal at the undesirable harmonic of the
proper phase and amplitude, satisfying the complémentary solution, this

component of the harmonic can be made to cancel] exactly the particular
component of the harmonic caused by the lower harmonics of the beam"
current at the position of the output cavity.

In Section lII, the interaction impedance concept illustrates that
the impedance of each space-charge harmonic is actually a function of the
space-charge wave propagation constant rather than the beam propagation
constant, pe . This approach yields solutions to the beam equation such
that both the space charge wave phase constants for a particular w/ u,
and transverse geometry are slightly larger than those generally used.
Consequently, the phase velocities are slightly smaller than those
generally used. Since the fast and slow wave velocities are no longer
of the same amplitude, they never cancel; that is, the velocity can only
decrease to a minimum amplitude, never to zero. In higher harmonics
lower order terms of the particular solution also prevent the velocity
from nulling. The current, however, must go to zero and does so, but
the increase in the phase constant causes a slight change in the phase and

location of the null as shown in Equation (84).
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APPENDIX A. TRANSIT-TIME CORRECTION FACTOR

The transit time correction factor, & , can be expressed as
accurately as needed, depending on the degree of accuracy desired.
Equation (11) can be written approximately as

~

ug ug Al
.‘g=1*-ﬁ;=1+26 , (Al)

such that & is a function that contains itself. From Equation (12), it

is seen that

-in[p°d(l ] g d
6§=2 v 2 \T+3/ ., [ut-pd+—°— (-L;] . (A2)
4 B d e 2 \l1+6
2

For an infinitesimal gap, Equation (A2) reduces to

6=% 6—1—;) coswt . (A3)

However, from Equation (12) it is seen that for an infinitesimal gap, the

first approximation of & is written as

6 =% cosét . (A4)

Thus comparing Equation (A3) to Equation (A4), one sees that & can
always be replaced with §/(1 +§) for the ‘next higher order correction.

For example, in the limit, the correction becomes

Ug 6
T3 .
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A more careful observation of this series shows that

rq.gpm = F(8) , (A6)

where

F(6) =6

Solving for F(8) yields

F(5) =% <\/1 T 46 -1

(Only the positive root has meaning. )

Thus combining Equations (Al), (A4), (A6), and (A7), one can

write the velocity as

— =14+2F(6)=(1+ cco-wt)*
o

This is exactly Vlebster'c1 theory, proving that & can be corrected by

always replacing it as 1_-6|-_8 “in the transit-time Equation (11) .
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APPENDIX B. TRANSIT-TIME VELOCITY-

/
The velocity of Equation (13) when expanded gives an infinite series

of harmonics, and is in the form of

¢ B d . Ped
q =ao+Zanc00n wt -T)ansmn wt - - . (B1)
n n

This series is exactly accurate for the third harmonic (within the limita-

tions of the assumptions made). Using the following definitions:

w0
.

[ ]

n
N
o

o
"
Nlc

%

(%Y

B d
= - -2
oefu-2)

gives the complete series, through the third harmonic as follows:

0
"
k1>

]

o
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APPENDIX C. CONSTANTS USED IN POLARIZATION EQUATIONS

The following constants are defined for use in Equations (49), (50)
and (51) . When one calculates these constants for a typical beam case, the
§ factors can be obtained for various a/b ratios from Figure 14. The

corresponding first null points of the current harmonics are presented

in Figure 15,
.0 —

0.9 — —_—— —

0.2 —

l l | l
°0 0.5 1.0 1.8 2.0

Byb —~

Figure 14. £ Factors for Various a/b Ratios versus f b .
e
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ABSTRACT

In the investigation of harmonic outputs from klystron amplifiers,
two avenues of attack are followed. Large signal equations, valid at all
drive levels and suitable for digital computer solution, are derived.
Small signal equations for use in linear regions of klystrons are also
derived to provide initial conditions for the large signal case. The use
of the equations is illustrated in two appendices which set them up for
the SAL-36, a three-cavity klystron amplifier. Since computer solutions
give no indication of functional variations, analytic solutions are derived
for use in synthesis. They predict the magnitudes of current density
harmonics up to a drive level given by y = 0.736, and the magnitude of
the fundamental upto y= 2.8. The main contribution to harmonic cur-
rent density is seen to come from the fundamental beam disturbance.
Plots of theoretical current densities as functions of y are presented.
At low values of y, the maximum of the fundamental occurs at 90
degrees of the plasma wavelength. As y is increased, the maximum
shifts progressively closer to the plane of excitation. This has been

shown experimentally by Mihran®

. A further check of the equations is
made by showing that they reduce to those of Webster in the region of

negligible space charge.
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INTRODUCTION

As high powered klystron amplifiers come into wider use,
spurious outputs become more and more of a problem particularly in
radar applications where a single output frequency is desired. The
inherent nonlinearity of the bunching process causes a klystron beam
to be rich in harmonics which are generally not wanted in the output.
Before these undesired outputs can be minimized, a method of com-
puting them must be developed so that proposed parameter changes
can be evaluated.

Two avenues of attack present themselves. The first is to use
conventional analysis to obtain solutions in closed form; the second is
to use a computer to solve the defining differential equations by numeri-
cal integration. By using a computer, solutions may be obtained
directly and boundary conditions fitted exactly. An immediate objection
is that a computer solution gives no insight into the functional variations
of the parameters involved. An analytic solution in closed form is
therefore much more desirable as a tool for synthesis of klystron beams.

Obtaining an exact solution to a nonlinear equation is often
extremely difficult. When the magnitudes of the variable quantities are
small (small-signal case), many simplifying assumptions may be made
in order to lirearize the equation. Solutions then follow easily and the
results obtained are valid within the range of small signals. At large
signal levels the errors involved in many of the simplifying assumptions
grow to such magnitudes that the results are useless. To keep errors
within reasonable limits it then becomes necessary to make fewer sim-

plifications and solve the more difficult equations.
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This study employs both avenues of attack. Equations suitable
for computer solution are set up for both small and large signal cases.
Solutions to the small signal case are valid in the linear region of the
klystron. At this point they provide initial conditions for the large
signal solutions which are valid at any signal level. To aid in the syn-
thesis problem, analytic solutions, valid up to intermediate signal
levels, are set up. Although their results are questionable at very
large excitations, they give the direction and order of magnitude of
parameter cfungen necessary to minimize spurious outputs. After
changing parameters, computer solutions can again be run to deter-
mine the true effects of the changes.

All equations presented may be used with any klystron. To illus-
trate their use, two appendices have been included to show specific
equations for the SAL-36, a three-cavity klystron amplifier developed by
the Sperry Gyroscope Company for the United States Air Force.

To make this paper more easily readable, the nomenclature used
by others in the field will be used as much as possible. Symbols used
will be defined at the beginning of each section.

-2~



Sxmbo 1s:

SMALL SIGNAL COMPUTER SOLUTION

electronic charge (magnitude only)

electronic mass

longitudinal dimension (along the beam)
average space charge density (magnitude only)
variational longitudinal electron velocity
average electron velocity

total longitudinal electron velocity

gap spacing

gap voltage

longitudinal gap-coupling coefficient

peripheral equilibrium radius of the beam

variational displacement of the electrons in the longitudinal

direction (from the d-c beam position)

acceleration of the electrons in the longitudinal direction

longitudinal circuit electric field (variational)

longitudinal space charge field (variational)

Small signals are taken here to mean that the amplitude of the

beam disturbance is small enough so that velocity and phase remain

linear. Although harmonics are generated within the beam, they may

be considered to be independent within themselves; that is, no coupling

takes place between the various harmonic components. Since solutions

3.



are to be limited to linear operating regions, only the fundamental
component will be considered in this analysis.

The physical conditions involved in the problem are as follows:

1. All electrons are initially moving in the positive z-direction
with a uniform d-c velocity, u .

2. Electrons are constrained, by a strong z-directed magnetic
field, to flow in a plus or minus z-direction only.

3. The d-c beam has an average electron charge density -p
and an equal and opposite positive ion charge density +p ° which form
a neutral plasma in which only the electrons move.

The equation of motion for slectrons in the beam is given as
E_ +E ()

(Eu+E ) .

.P:
— - .t
Po m

Velocity is the total time derivative of displacement and may be

written
d Pz
¥ =~ = . (2)

(o]

4 Ps g Bs 08 Fe .
&t B, ot p, Yo Bz B )
a Pipp Py L1 8P "
d= Py ¥z p u 3 p_
° o o
) P
Solving Equation (4) for = _pﬁ. and inserting the result in Equation (3)
o
gives
E! = 4L ..‘F:.'.. (5)
u, dz P )



Since acceleration is the total time derivative of velocity, it can be

written as
P
d &~ _ z
a-t- uz s T . (6)
o
d d ~
But T '\‘il =u 39, therefore,
. oz
d :5 - Po 7
de u ~ " 2 . (7
[ Y,

P, X
d
& 5 (8
[ []
5’-E€=-—z° & _+E . (9)
z uo muo cz 8z

These are the main equations, which, when solved, give the velocities
and polarizations necessary to define completely the state of the beam.
It is now necessary to find representations for ﬁ“ and Eu .

The circuit electric field for a gridded gap is a constant -g-
over the entire interaction spacing. In higher powered klystrons,
where high density beams prohibit the use of grids, electric field
strength becomes a function of position. It is convenient to normalize
the circuit field to the gridded gap case and then to represent the

. jlwt + @)
£ - 117 g (10)

cg = @ BglmrT) e ,

field by

where 'V' is the magnitude of the equivalent gridded gap voltage,

d is the gap spacing, and pz(z, r) is the longitudinal gap-coupling

5.



coefficient which gives the geometry of the electric field. Initial phase
angle is accounted for by ¢. Electric field measurements have been
made in an electrolytic tank and it was found’that
2
b (2. 7) = Alz) + (r—’- B(z) (11)
! ep

where A(z) and B(z) are polynomial approximations to the experi-
mental curves. (See Appendix A.) The expression for the circuit

electric field is then

2 j(wt +
E = Jyd’— [A(z) + (E-L' B(z)] Gt : (12)
cz ep

and is to be used as the time reference at z = 0. Thus, in the first
cavity =0,

Of course an excitation field in a cavity, as described by
Equation (12), will excite an infinite number of space charge modes.
If it is assumed that only the lowest order mode is important, then
the electric field variations across the beam in the drift space can
be described by a zero order Bessel function of the first kind as
shown by Beck. ] Electric field strength, in this mode, is therefore
weaker at the periphery of the beam than at the center. The field
in the cavity, however, varies as a constant plus a parabola and is
stronger at the periphery. The higher order modes in the cavity
account for this difference. A model analysis of the electric field
becomes necessary if the perturbing field of the lowest order mode
is to be described correctly and it can be made either before or
after the equations are solved. In this small signal case the solutions

will be obtained as if the field in the beam varied exactly as the field

-6-



in the cavity to see what displacements and velocities would occur at
the periphery if all the modes were considered. Results obtained
must then be modified before they can be used as initial conditions
for a large signal solution. The actual modal analysis is shown in
the next section and the modification of small signal results is ex-
plained in Appendix B.

An expression for isz is found from Poisson's equation,

v-E =£ . (13)
o
9 P
Taking only the longitudinal effects into account, p = o 53 ..Pi. and
o

Equation (13) becomes

P
~ 2 m z
Elz = up Q_ PO ’ (14)
ep
where -n-“—o = upz (plasma frequency). Equation (14) is exactly true
o

in the case of a beam of infinite dimensions. Since the transverse
limits are finite, Equation (14) must be modified by replacing "’p by
uqz , the reduced plasma frequency. The space charge field in

final form is then

p
t -, 2™ = (15)
sz qz e P,

The combination of Equations (12) and (15) with Equation (9)

results in

%
d Yz e ]V [ r N jwt+d) . 2 m g
3 a = - muoz T A(z)‘i‘(?.e; B(z)| e "‘qu - —5:
(16)



Solutions at any value of radius are specified completely by

considering the two radius values r =0 and r= rep’ since

‘ 2
pz Pz r Pz Pz
- =\7" /) "\ ) “\+) |- a7
po o ep o Po
a P a
where the subscripts a and p denote axial and peripheral values

respectively, Egquation (16) can now be written as two separate

equations:
~ . 2
d [/° jwt+d) o P
a?<a£>=';l:—z' '%'—"A(z)e +-q—'z<—p’-) :
°% o u o/,

(18)

2
e M jlwttd)  © P
= T k(z)m(z)] e + _S_'z (_p‘) .
o uo (o] p

gﬂln.
7N\
e
)
"n

P
(19)
The variational polarization distances are assumed to be

P ) _ jlot - B 2)

7’: = [va(z) + Jwa(z)] e ’ (20)
a

Pz j(wt - p z)

(—F—) = [v (2) + jw (z)] e e . (21)
o/p P P

When Equation (20) is substituted into Equation (8), the result is



% jlwt -B 2
(i-) - ad;' [(va(z)-o-jwa(z)) e °’_—] . (22)
a

Equation (22) can now be combined with Equation (18) to give

2
Jjwt -p =z
d_dz-z [(va(z) +tiw,(z)) e e t),_ R m: g! Alz) e jlwt +6é)
()
@ : jlwt - B 2)
e ORC R AT ° . 23)

o

After performing the operations indicated and dividing through by
Jwt - B_z)
e e, Equation (23) becomes
L s iw o) . M ez +8) g,
v (z) + jw (2)) = - A + ;
—z (v, iw_ ;-‘?- (z) e " (va(z) +iw,(2)) .

dz
o

(24)

For solution by a digital computer, Equation (24) must be

separated into real and imaginary parts and the parts expanded into
(B z +4)
e

first order differential equations. Letting e = y+je,

Equation (24) expands into

dva(z)
- el va'(z) = pplz) ,
b e’
d R - qz
T P,l2) = py'(2) = ;f}' T Al v+ WE v e
--- 81
& Vale) = w @) = q 2 ‘=0



mu d
o

2
d W
Y03 qa(z) = qal(Z) = -__e_.z.. _'V_' Az) ¢ + —327- wa(z) .
(3

Similarly Equations (8), (19), and (21) can be combined to
give the equations defining polarization distances and velocities at

the periphery of the beam, These are

d = v YUs) =
= VP(Z) = Vo (z) = pp(z) ’
| oqs’
d - ] - Z
-1 Pp(z) =p Yz) = - m—:Oz- %'- (A(z) + B(z)) v + # vp(z) ,
= wolz) = w ia) = q (2 -
T Yp % r=r
2 °P
d _ . _ “Yqz
.03 %(z) = q, (z) = - # Lﬂ (A(z) + B(z)) ¢ +-ug-;_- woiz) .
(]

Solutions to the Equations Sl and S2 will yield the values for v, w
and their derivativesin z at r=0 and r = rep' The values for v
and w give the polarization distances, and multiplication of their
derivatives by u, gives the velocities. Equation (17) specifies
them at all other radius values.

An IBM-650 digital computer program and a specific solution

for the SAL-36 is shown in Appendix A,

%’
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§Zmbol 8:

LARGE SIGNAL COMPUTER SOLUTION

relative phase of an electron beam disturbance and the
reference microwave circuit disturbance 6 = wt - Y.
initial relative phasé of an electron beam disturbance

and the reference microwave circuit disturbance. Tkis

is the identification parameter used to identify an electron
all through the theory 9|Y=0 =6 = wtly___ 0"

variation of phase from the initial relative phase eo
computed in the sl;,udy of the electron dynamics
§=e°-e=pe(-%- .

normalized longitudinal component (Y = ﬁez). "

normalized variational longitudinal velocity W = T

(<)
total longitudinal variational electric (circuit) fieid.

total longitudinal variational electric (space charge) field.
nth harmonic (in 0) longitudinal electric (space charge) field.
nth harmonic (in ) longitudinal electric (circuit) field.

nth harmonic (in wt) longitudinal electric (circuit) field.

nth harmonic (in wt) longitudinal electric (c:rcuit) fieldf
distribution function showing the geometrical variations

for a gridless gap.

nth harmonic (in wt) longitudinal electric (circuit) field
distribution for the lowest order space charge wave mode

at r =0,

-11-



v - nth harmonic (in wt) gap voltage

n
: ¢n - nth harmonic (in wt) gap voltage phase angle

'i'(Y) - total beam current

i—;(‘[) = nth harmonic (in 8) bear'n current

In - nth harmonic (in wt) induced gap current

zZ - nth harmonic (in wt) circuit impedance at the gap

F(6'-8) - normalized (displacement dependent) space charge
force function (force between two discs of charge
located ©'-0 apart in phase.)

G(6'-6) - normalized (displacement and velocity dependent) space
charge force function

an - nth harmonic (in 8) longitudinal space charge reduction
factor

oy - nth harmonic (in 8) velocity dependent longitudinal
space charge reduction factor

ﬂe - electron phase constant or wave number pe = -“—’o-

wpz - gquare of the beam plasma frequency upz = :::

- longitudinal gap separation of the microwave cavity

Vo = d-c beam voltage

-io = d-c beam current

uo - average electron velocity

ﬂl - variational longitudinal electron velocity

P

-af- - variational displacement of the electrons in the

longitudinal direction (from the d-c beam position).
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As the amplitude of the beam disturbance increases, the
harmonic content of the klystron rises and space charge forces be-
come more difficult to analyze. With long interaction spaces, long
drift spaces, or large applied signals, electrons may have large
displacements accompanied by severe nonlinearities in phase and
velocity, If a Fourier analysis is made of the various beam para-
meters, solutions are possible only when phase and velocity remain
linear. To overcome this difficulty, partial differential equations
are written for the beam parameters while physical quantities in
the circuit are Fourier analyzed. The theory and methods used
here are based on work done by Wang. 2

In an electron beam, it is desirable to express the dynamical
quantities in terms of an independent variable that identifies any
particular electron. To do this, the entrance phase angle of the
electron at a particular position is chosen as the electron identification
co-ordinate. At the position chosen, the phase angle 6 = wt - Y is
defined as 90 . At any other location the phase angle 0 will not,
in general, be the same as Bo but can be related functionally as
oY, 90) . All disturbances are periodic in 90 since it is evident
that the forces experienced by a particular electron of phase eo
will be duplicated by the electron which starts a whole number of
cycles later, Because of the interrelationships among eo , wt,
and Y, the disturbance parameters may be expressed in terms of
any two variables of the three. A complete description of the inter-
relationships may be given by a surface in the 60 , wt, Y co-ordinate

system as shown in Figure 1.
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Figure 1. Interrelationships Among 6,, wt, and Y.
The two main working equations are derived, as in the
small signal theory, from the equation of motion of electrons.
From Equations (1) and (6) and Euler's rules of differentiation
d o 9 9 w ds
-afu'sw\lz""—'-uzn . (25)

Using the relationships g-'{ = +‘{i', and %muoz = eVo , and

realizing that d eo = 0 since the electron identification parameter

(3
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©® is held constant as the electron is followed in space, Equation (25)
o

becomes

aW(y,e,) & ,+E,)

{1+ W(Y,Oo) T— = -~ —Tv—p—— . (26)
o e

From Equations (2) and (3)

diz__»_b_pf_dzapz 2
r-(3 ) = uz =T ) + qt 5z ""'_'p . (27)
[o) [ [+]
p
When Equation (27) is multiplied by == it becomes
[

-]:_ d w~ _ ~ _ ~ 9 ~
o & o(Y.0) = p_ W(Y,0) - (1 +W(Y,0)) & 68(Y.0,) , (28)

de
where r 3(Y 0 ) =0, since _aﬂ = 0 as explained previously.

- d@o deo do _
Realizing that F T T[T 3— , Equation (28) transforms into

o8(v,0)  W(v,0,) 26(Y, 0 )
- = - . (29)
Y 1+ W(Y,0) Y

Solutions to Equations (26) and (29) for all values of Bo from
0 to 27 are sufficient to specify the beam completely. It remains
now to determine Ecz and ﬁsz which are physical quantities that
can be represented by Fourier series.

The Fourier coefficients of ECZ(Y, Oo) are to be represented

in the following manner:

~ 1 — jné -jnod
E_(Y.0) = Z 3 [Ecm(Y) e +E* (V) e ] (30)

o czn
In essence, the Fourier coefficient of the harmonic time series is

E.cgn Eczn(Y) e Y ,» where f::n(Y) represents an arbitrary part
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of the functional dependence on Y. The advantage of this representation
is that, in general, the physical quantities of interest are propagating

very close to the average electron beam speed and i::n

(Y) will be a
slowly varying function of Y. Equation (30) may be written in a time
series as

ﬁc'(Y. eo) = ; Ecm(Y) cos nwt . (31)

It is convenient Here, as in the small signal case, to normalize to an

equivalent gridded gap voltage and use Equation (31) in the form

(¥, r)
E_(v.0) =; Fan S 'v“' cos(n® +nY +é,) , (32)

where ‘n is the phase difference between the gap voltage and the
time reference of ﬁu in the first cavity, and nwt = n6 + nY by
definition.

In the small signal case, the equations were set up for
solutions at r =0 and r = rep . Equation (19) could then be used
to get solutions at all other radius values. As stated then, a
modal analysis of the electric field must be made either before
or after solutions are obtained to determine the actual fields of
the important modes. In this large signal case, the analysis will
be made now so that results can be used without modification.

The expansion in normal modes of the magnitude of the

electric field is

E_ - g C ME_. . (33)
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where I:c is to be normalised so that the integral of its square

gnk
over the transverse area of the beam is equal to unity. Only the
lowest order space charge wave mode is being considered and for
this Ecznl is proportional to Jo(pmr) ,» Where pm is the nth
harmonic radial propagation constant and .)‘° is the zeroth order
Bessel function of the first kind. The summation over k in

Equation (33) vanishes and E czal is found to be

E JO (ﬂtnr)
csal ™ — *
p':n rep
1
= [ 2w (B,,r) 3 2B, 1) d (B, 7)
tn
- 0 -
J (B, r)
= o _tn - (34)

2 2 2 }
wrep (Jo (Pm r ep) +7J 1 (ﬂmrep)) ]

By multiplying both sides of Equation (33) by Ecz and integrating

nl
over the transverse area, the value of C nk(Y) can be determined.

That is

an(Y) = [ Eczn Ecznl d (TA) . (38)
TA

From electrolytic tank measurements Ecm is known to be

\7 2
E_ - Lae-l— Henl{¥r?) = t';_l_ [A(Y) + (,—:;) nm]. (36)
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Equation (35) can now be solved by using Equations (34) and (36)

|Vn| 2w
d

[‘ ron {"oz (ptn x'ap) + le ‘ptn rbpq.r

C.(Y) =

PenTep |
pﬁ.}l f I (B,,r) B rd(p, r)
m .
0 |
ptn rop
Tep Ptn °
' )

After performing the indicated o&:raﬁons and using the result in
Equation (33), the electric field can be represented in space by

2w 'ep Jl (ptnr )

V
Ec:ln * Idnl * = A(Y)
+35 0, r.p)}] tn

2 2
[n r.p {Jo (pmr‘p

+

3 2
[(Pm r ‘2) J1(Ben Top) + 2Py r.p)‘ I (Ben T ‘2) -2p,, T .JLJI Ben r'ﬁ’l )
Top (Pro) :

Jo (ﬂmr) . | (37)

Equation (37) may be written-more simply as
lczn = [KhA(Y) + xzn I(Y)] Jo(pmr) ’ (38)

since all other quantities are constants for a given klystron,
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Equations (26) and (29) may now be solved at r = 0 and
all other values obtained from the Jo(pmr) variations. Comparison

of Equations (32) and (38) shows thatat r = 0,

p (Y,0)=p' (YY) = K A(Y)+K_ B(Y) , (39)
zn zn in n

2

and this is to be used directly in Equation (32).
The presence of the disturbance in the electron beam gives
rise to a space charge field which exerts forces on the electrons.

Again the Fourier coefficients are to be represented by

N —

E _(v.0) = 3

n

[i:: D) LA EX (V) e 'j""] . (40)

It is common in klystron analysis to consider the space charge
field as being proportional to the Fourier component of beam current

{. Symbolically

2 =~
—  mu 2 in
Egn(¥) =) enf % 1';' (Y) (41)

where Qp is the plasma frequency for an infinite beam and 6n
corresponds to the plasma frequency reduction factor at the nth
harmonic frequency. An expression for i-:(Y) is found by operating
on the Fourier series for the total beam current and applying the

principle of conservation of charge. The series is

-

~ — ) e -i
Ty = - +3 Z; () e +i¥( e in8

. (42)

-jme
Both sides of Equation (42) are now multiplied by e jm d6 and the
substitution T(Y) do = -1ode° is made. After integrating both sides,
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there remains

— i -
in(y) = - -3— [ e jnede ’
]

which is the desired result.

If Equation (41) is now substituted into Equation (40), and
Equation (43) is substituted for i (Y) but with @ primed to
distinguish it from the 0 in Equation (40), the result is

2
£, (v.0) = :;%— 2V 8 [r(e--e)de-o :

where
2 w2
n n * 6

1 6n2+6"'z L3 n
F(0'-6) = 5 —— sinn(6'-0) - T cosn(8'-8) .
n

It is well to stop here for a moment to consider Equation (44).
Since Oo is periodic, a wavelength can be broken up into
discs of electrons, let us say twenty. The Oo = 0° disc may
then be thought of as being repeated in space every 2v radians,
thus making up an entire array of discs. Other arrays may be
visualized for the 6_ = 18° disc and so on. If the disc being
treated at the moment is a 0° disc, and it is located at 0,
then the entire 18° disc array at its 0' + 2wK locations will
apply a force to the 0° disc. This space charge force is given
by F(06'-8). An integration over the twenty discs will then give
the total force on the 0° disc. The other nineteen discs are
treated in similar fashion. Thus Equation (44) represents the
usual space charge field associated with a specific disc at a

specific location in space.

«20-
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A more recent theory of the space charge forceZ shows that
di_(Y)
there is a component of electric field that is proportional to —%s?-— .

Wang gives the total modified space charge field as

M
muw 2 i_-(Y) mw, L d 0
r(Y) - j 5 2 n - P v 2 i, (45)
sn en| e n io enz n ayY ’

where cnz is another constant determined by the particular harmonic
frequency and the nature of the circuit under consideration. For

cylindrical drift tubes,

8%2

2
G'n = pe —sﬂ: . (46)
By direct differentiation of Equation (43),
i (Y)
d i (3 3 e
—_— el -jn® 9no
dY ~ n {e 7 99, - (47)

Substitution of Equation (29) into Equation (47) gives

LY
d 2—
o jn -jné W
. Lf ™ % e)

The second portion of Equation (45) may now be evaluated in the
same fashion as the first portion after priming the functions of eo

in Equatian (48). The final expression for the space charge field

is then
-~ wpz W
E“(Y.Go) = - -‘F ZVO ﬂe [r(e -0) + l+'V7' G(o -9)] doo ,

(49)
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where
2 *2 2 *2

U‘n + 0 o -3
L Ryt sinn(e'-0) - 2B cosne'-0) .

n

A

G(e'-0) =

Curves of plasma frequency reduction factor have been published
by Branch and Mihran, 3

The final quantity of interest is the induced current n a
cavity. This may be computed by relating the VI product to the

integral of E czn | J in the beam

zn
o)
ann = [(Eczn . Jm) d(TA) dz . (50)
-0 TA

It must be remembered, however, that solutions are obtained at
r = 0 and that the importantzpartl of Ecm and Jz n Vary as
J’o(pmr) . An average of Jo (pmr) must be taken over the trans-

verse area of the beam and used as a factor in the integral. The

average is
Beaep
—— 2 726 rd, r = 3% )+ 728, r )
e ° P TPenT Jo PenTt BT o PenTep! * I1 PenTep -
ep Ftn
0 (51)

After dividing Equation (50) by Vn and integrating over the transverse

area, the result is

dI Bl YY) o -jnY

-jinY
where e n is included to change from a 6 Fourier component to

an ot Fourier component in the cavity.
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To explain how the equations presented fit together, a
schematic diagram of the complete interaction phenomena is shown
in Figure 2.

This simple interaction diagram explains the basic processes
of interaction and the relationships among the physical quantities
involved. The arrowheads indicate the direction of flow by which
one physical quantity is controlled by another. Light lines in-
dicate a simple functional relationship while heavy lines indicate
differential equations connecting the two quantities.

At the top of Figure 2, in the block marked '"Beam', are
three quantities: K(Y. eo) , the acceleration; W(Y. eo) , the
normalized longitudinal velocity; and a(y, eo) , the normalized
displacement. The differential relationships I and Il are
generally total differential equations in time., Since the electron
identification parameter is held constant, links I and II are
partial differential equations with respect to the variable Y.
These are given by Equations (26) and (29) respectively.

After applying a conservation of charge argument to
Equation (42), link IV is established by Equation (43).

Through an equivalent circuit, the strength of the electro-
magnetic field can be represented by circuit currents In at
various frequencies. Link V represents the differential equations
which are the key linkages between the beam and external circuit.
It is accounted for by Equation (52).

The Fourier components of the circuit field Ecz o can be

individually related to the circuit currents In through the complex
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Figure 2. Interaction Diagram.
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cavity impedance, Zn . This represents link V1. In dealing with

a cavity, the harmonic impedance Zn is usually known. An initial
estimate of harmonic cavity voltage Vn is made and Eczn
determined from Equation (32) using p.'zn(Y) + The circuit harmonic
current In is then solved for and an impedance zn' found by
taking the ratioof V_ to (-I). If z' # Z_, then a new value

of Vn must be assumed and the computations run again to deter-
mine z'x'f This process continues until the computed impedance
agrees with the known impedance. Conversely, the cavity impedance
required to produce a desired electric field may be computed in

the same manner.

Link VII shows the combination of the Fourier components
of electric field into a total field ﬁcz('[. eo) and is represented by
Equation (31).

In addition to the circuit force, there is another force
associated with a space charge field E"(Y. Oo) , 80 named be-
cause it is a field related only to the beam. This force may be
interpreted as a space charge repulsion force between electrons
contained in the beam and is dependent upon both the velocity and
displacement of the electrons. Link IX, provided by Equation (49),
illustrates this dependence.

Finally, the combination of space charge force and circuit

force is used to obtain the acceleration:
= .2 |8 8
Ave) = -5 [z"nr. o) +E (Y, eo)] . (53)

This is link VIII which completes the entire cycle of interaction.
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It should be realized that large signal equations will also
yield valid results under small signal conditions. The main reason
for having separate small signal equations is to save computer time
in the region where disturbances are relatively small.

Appendix B shows the equations set up in form suitable
for numerical integration by an IBM-650 digital computer. All
constants and initial conditions for the SAL-36 klystron amplifier

are calculated and a workable program is given.
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LARGE SIGNAL ANALYTIC SOLUTION

- average current density
- nth harmonic variational longitudinal current density

- nth harmonic longitudinal electron polarisation vector

J
o
J
zZn
P
zn
iz - total variational longitudinal electric field
m - longitudinal electric field reduction factor
“oo - d-c velocity of the unmodulated electron beam
M - magnitude of gap voltage
-~ voltage across an infinitesimal gap which has the same

effect on the beam as M in a finite gridless gap
C. - constant of proportionality between IVl and veff

- anode potential

a - depth of modulation (M)
o

“qn - nth harmonic reduced plasma frequency
- nth harmonic space charge wave propagation constant

p
qn
Y. .

qQ " v, w 9C
- amplitude parameter Y = “’ql Z

- beam cross-sectional area

Other symbols used in this section have been defined previously
or are evident in the text.

A straightforward way of calculating the nonlinear behavior of
klystrons is to treat the electron stream not as a limited number of
electrons, but as a "fluid" where discrete charges are thought of as

being ""smeared out, ' and to solve the nonlinear space charge wave
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equation for given boundary conditions. The theory to be derived here
always yields single velocities for given positions in space. This
means that in this fluid model, electron overtaking does not occur,
since if it did, the velocity would necessarily become a multi-valued
function of space.

The purpose of this chapter is to derive the nonlinear space
charge wave equation and solve it by third order successive approxi-
mation for a gridless gap klystron amplifier. The method of attack
is based on a paper by Paschke. 4 Here again one-dimensional confined
electron flow is assumed.

The analysis is begun by writing one of Maxwell's curl equations:

8D
Vx_l-_l=is+-5-r . (53)

When the divergence of both sides is taken this becomes

8
v .V xH=v-Jc+8t(v-l_))=0 , (54)

since the divergence of the curl of any vector is always zero. From

the assumption of confined flow ¢ - J ¢ = -r.-!' . Also, from Maxwell,

¢ + D = p and Equation (53) becomes the well known continuity equation,

-8J
= - (55)
- OP'
A new variable P, the polarisation, is now defined such that Y I J =

) 4
and -5;1 = p in a confined flow electron stream. It is necessary to

show that P is consistent within Maxwell's equations. This is done
by inserting the definition of P into Equation (53) which then becomes
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8P, oD 8 [
ng = -WE+FF_3?(E-PZB—) =-a—t-(¢o§-P‘E) . (56)
Again taking the divergence,
9 8P, 9
v.vxE:O:.;.; \7-2_7;-)::“(‘)-P)=0 , (57)

which establishes the validity of the variable.

An examination of Equation (56) shows that the variable P is
actually the negative of conventional polarization. This choice was
made because the conventional polarization vector points in the direction
of motion of positive charge and electron motion is of primary interest
in klystron analysis.

The equation of motion for confined flow electrons in an axial

magnetic field is given by
% =-=E =qE . (58)

Since the perturbation velocity 'ﬁz is a function of both space and

time, Equation (58) can be written as

of, 0%, ”
ot tlu,+T) gz =nE, . (59)

Expressions for Ez and 'i'xz must now be obtained in terms of P‘ .

This is done by making use of Maxwell's divergence equation 7 + E = '{— .
- o

After taking partials and rearranging ,

o o, of oP_
Tl tS\T™ /PR (60)

When the transverse geometry is finite, the transverse electric field
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components exist and cause a reduction of the longitudinal electric
field for a given polarization. The parameter m is introduced to

account for this reduction:

P =c¢cf% +m . (61)
] o z

Taking the partial with respect to = and again with respect to t

results in

8P [} 4
9 m
AR ‘o(‘h"‘*'ﬁ) - (62)

From Equations (60) and (61) and the definition of P s’ Equation (62)

reduces to - 2 J g = 3 p » which is the continuity equation. This

1 ot
establishes the consistency of the definition of m. Solving Equation (61)

~
for E‘ gives

~ Py -
£ "M . (63)

 J .O

The convection current density in the beam is the product of

charge density and velocity. Symbolically,
- ~
Jo t I, =, tp)(u +u) (64)

where the d-c current density Jo = PyYye Solving for i‘iz gives

J_-u p
~ - 3 (o)
u = b To . (65)

In terms of P' » Equation (65) is

P P
4 +
_ bt Yo “¥s
z P,
+
Po 58

It

(66)

~30-



The derived expressions for Ez and 'ﬁz are now inserted
into the equation of motion, which, after performance of the indicated

operations, transforms to

a"‘Pz azpz 8P, azPz bP, 8P, 9P
R TARE VA 'n—+u°-a-réo+
2
8P, azpz 8P, a p
+ Jo e T N TY T + uo azz po (

_"L _ 8P i 6
T— + u T_ (l"z m) -5-— o . (67)
‘

Equation (67) is a npnlinear differential equation which, when solved,

yields expressions for polarization and, indirectly, velocity as functions
of time and space. As previously stated, a knowledge of the polarization
and velocity defines completely the state of the beam. A third order

theory will be considered and hence terms of higher than third order are

to be neglected. Under these conditions Equation (67) becomes

2p o’p alp

z 2 z . 1 z 8 2 (P -m) +
azz u, bz ot uoz atz P z Jo“o

2
P, 3 P, 2 z 8°P,
7?" ""f' 5: Bt 3;' 5 Z
2

3 8Pz 9 Pz 8Pz 8]?z

+ > Dz (Pz'm) t—=3 -2 9z ot Oz 13

€ 4
o0

GZP P 2
+ z | ] (P m) -
atz a‘ € J u 5

Ll
o

(68)

-31-



For very low power levels, .all but first order terms can be
neglected. Equation (68) would then consist of only the first four
terms and would lead to the well-known space-charge wave equation

for small signals. A third order solution however, requires that

P =P + P + P .
z zl z2 z3
T =% +% +1% ,
z zl z2 z3
- + + . 6
m m1 mz m3 (69)

Substituting Equation (69) into (68) and separating terms into first,

second, and third order, results in

f +f +£f =0 (70)
1 2 3
where
2 2 2
¢ 2o Ffm, 2 2P °Pz1+pz
1 pgt w B uoz o> at Py
2 2 2
g ootmz, 2 2P 1 0Pm o2,
2 Tt 8, BE u gt a2 2
2 2
9 gzl 5 le apzl b le
tT ox 8 © T8t D= ot
oo t
%P . 8P P 2p P
L2 gl sl s1°sx+g %P
J L3 T 8'2 . uT oz zl
[ 2 +]
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P P P

23 2 z3 1 z3 2

=~ + + + P
37 s U Bz ot o2 Pas Fas
o
) o aZP ) o azp P 2 2

2 zl z2 + z2 zl . 22 d le } aPzl 3 pzZ

+ Jouo 9z 8tr 9z atZ ot 9z ot ot 5z ot

2 2 2 2
. i 8P ] PzZ ) o 22 9 P 1 8le 9 PzZ ) OPzz 9 le
J 5 9z ot 9z 9z ot ot azZ ot P

2
8 zl oP PlaleaP +8le oP
T_T"S_B_

3 oP 2 ap
+=0_ z +
Sz \?® pzﬁ —‘HJ—le(
[o I e }

The effects of the transverse fields, represented by m, resuit in a
reduction of the plasma frequency and are accounted for in Equation (70)
by the substitution of ﬂqn for ﬁpn

There are many possible solutions to Equation (70), the simplest

of which is to set the terms of equal order equal to zero. That is,

fl =0 , {71a)
f. =0 R 71

2 (71b)
£, =0 ) (71c)

Although this may appear to be a trivial solution, it is sufficient to

satisfy the boundary conditions.
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Equations (71) now represent a system of linear differential

equations, all terms in each equation being of the same order. The
necessary procedure is first to solve E 4uation (71a); put the solution
into Equation (71b), solve it, put the solutions‘ to Equation (71a) and
(71b) into Equation (71c) and solve it. The total solutions Pz +

1
Pzz + F’z3 must satisfy the boundary conditions. This approach
to the solution of a nonlinear differential equation is known as the
method of successive approximations.

From Equations (66) and (69), the velocity terms are found

to be
8P P
- zl zl
8P P P
. o 22 g2 zl
'pouzl * 5 tu, W ¢t '\"1'1 T (72b)

P apP 8P apP
’ 23 z3 zl 2l
o z3 -EE—- +4 uo -T'-— + ﬁ.z _r'- + u'l TI— . (72(:)

'
©

=!
H

Velocity Modulation by a Sinuaoidal RF Voltage:

A gridleas gap klystron cavity of width d, and center at
3 =0 is assumed to be modulating & beam of d-c velocity Yoo
The effective r-f voltage across the gap is determined from

vmzf f“dl . (73)

-q0
After expanding in normal modes, the fundamental component of
electric field for the first order space charge wave mode may be

written as
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ﬁcz = 'X-‘ [KIA(z) + KZB(z)] Jo(ptlr) cos(wt +¢) , (74)

where all terms are defined in the previous section and solutions are
to be found at r = 0. The limits of integration in Equation (73) may
be taken as -1.65d to +1.65d since the amplitude of the field has
fallen essentially to zero at these limits. After substitution of

Equation (74), the effective voltage is

1.65d
veff = f l}-‘- [Kl A(z) + KZB(z)] cos (Bez + uto + ¢)dz ,
-1.65d

(75)
where to is the time an arbitrary electron passes through the center
of the cavity and wt * 8 z + wto in the limits of the cavity. The

e

integration is a simple but lengthy process and the result is

\'A =C_ |V + ¢) . 76
eff ) Ivi cos (wt _ + @) (76)
The constant C 1 is given by the somewhat formidable expression
C -2 sint/2 (K.a +K_b)
1 g d l o 2 o
e
2 .
+ ;-1-; (D5 sint/2 + D6 cos v/2) (Klaz + biz)
e

+ —Es— (D3 sint/2 + D, cos v/2) (Kla4 + bi4)

2 .
+ = (Dl sint/2 + Dz cos 7/2) (Kla6 + bib) ,

(17)
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where /2 = 1.65 ped' .K and bK are the coefficients of A(z)

and B(z) respectively, and

(‘l'/Z)6 - 30(1'/2)‘r + 360(‘1’/2)z - 720 ,

D, =
D, = 6(r/2)° - 120(1/2)3 + 720(+/2)
D, = (+/2)" - 12te/2)" + 24 ,
D, = av/2)° - 24(e/2)

D_ - /2 -2

D, = 2(1/2)

The effect of the constant C1 is to reduce the problem to that of an

infinitesimal gap located at z = 0 and modulated by an effective
voltage of magnitude C1 |V| .
From conservation of energy,

dz - 1/2 78
IF =u, {1 'M'.tCl cos (wto + §) , (78)

z
o

where a is the depth of modulation -L!J- . For normal klystron

o
operation |c| < 1 and Equation (78) can be developed into a series.

Omitting terms of higher than third order results in

2
ds (cCl)2 c:.Cl 3(¢Cl)
o osuoo 1 'T+T 1+T co.(ut°+¢)
z=

(ac))? (ac)’?
- cos Z(uto +é) + —gi— cos 3(wt° + &) . (79)
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Equation (79) and the fact that at z = 0; F‘z = 0, are the required
initial conditions for solution of Equation (71). Equation (71a) is

solved by letting Pz = le(z) e ot P:l (z) e and separating

1
it into the two equations

2
d°P_. (z) dP_.(z)
zl . zl 2 2
... I 2 - -
.2 tiRy, —— ¢ (pql B )P, (2) =0
a?p* (2) dP* (z)
zl 1

—5— -1, —ar— t B2 B PI(x) =0 . (80)

These two equations are of the form

2
d y(x) d}( =
dxx +y, xx) +y, yix) =0 , (81)

a,x a,x

which has a solution of the form y(x) = a e + b1 , where
-v1+471 - 4y, -vl-'Jvlz-‘*vz

cl = 3 , and e, = yi . After applying

Equation (81) to (80) and using initial conditions to determine the

arbitrary constants, the solution to Equation (71la) is

P = wa sin pqlz cos (wt - Bez) . (82)
Having solved Equation (71a), the result is used in Equation (71b)
which is of the same form as Equation (71a) except for the driving terms
provided by Equation (71a). Since the equations are linear, superposition
can be used to handle each driving term separately. The arbitrary
constants are again determined from the initial conditions. Equation (71c)
is then treated in the same straightforward manner. The sum of the
solutions to Equations (71) yield the desired result, which, after a

great deal of algebraic manipulation is
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If velocity is desired it can now be computed using Equations (72).
Many of the higher order terms in Equation (83) can be
Sqn a1
neglected as long as =~ < 1 and T < 1. Under these con-

ditions Equation (83) reduces to

J aC

o 1
Pz = - -— sinpql(z) cos (wt -ﬁez)
ql
Jo
+ -;— —) -——2- (1 - cos Zp 8) cos Z(wt - z)

ql

o (ccl> uz
+ = s - 3 (3 sinpqlz - sin 3ﬁqlz) cos (wt - pez)

o (I.C1> uz .
- 3\ E (3 lmpqlz - sin 3pqlz) cos 3(wt - B 2)

(84)
Current density is simply the negative partial time derivative

of Pz . From Equation (84),

Jg w %1 ;
7 = -;;; - nnpqlz sin (wt - B _2)

+ 1 (——) ( ) (1 - cos zp z) sin 2 {wt - ﬂ z)
32( ) ( ) (3sinp z-lin3p z) lin(ut-pz)
9 [\ CC‘)S 3 in 3 3

- 33 <:;.;> < ( sinpqlz - sin pqlz) sin 3(wt - pez)

(35)
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Equation (85) is a somewhat surprising result since it indicates
that the main contribution to harmonic current density comes from the
fundamental beam disturbance and the harmonic spatial distribution is
controlled by the fundamental reduced plasn.a phase constant.

The question arises as to how large the amplitudes of the
harmonics can get and still represent good approximations to the exact
solutions. To extrapolate to higher harmonics, saturation effects
are neglected and the ''quasi-linear''case is considered. The maximum

current density appears at § z = and for quasi-linearity is given by

ql

L)

wp B
= -y sin (wt -z'p':l) +yz sin 2{wt -2-521) -% y3 sin 3(wt -;?rel) R
q

‘-CI ..H

o
g =
qu

L

(86)

aC
where y = ;'2— —z-l . This equation appears to be the first part of

ql
the infinite series
n)n
J - =P
z =Y 2 §-: L t-ome) . 87
T B z=% z n.l v smnb 25;1’ en
q” 2

Inx
Using the ratio test and realizing that x = ¢ » the series is found to

be absolutely convergent for y < % ¥ 0.736. Equation (85) appears
to be a valid approximation for total current below the level of

Y = 0.736. However, this does not necessarily mean that the
fundamental current at pql‘ = ;— is not correct beyond this level.

It is the limitation to third and lower order terms which prevents

the prediction of the saturation behavior of the harmonics. The power

series for the fundamental, from Equation (85), is
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J 0

.3’.1. = -y(l..;.yz+...)sin(ut-z-5—°—z) . (88)
“lege=3 v
q

This series converges much more rapidly than the one in Equation (87)
and at the saturation level, easily shown to be y = % , the second
term is only one-third of the first term. At any other value of Bqlz ,
saturation will be reached at a different y value and, if desired,

the values of y required for saturation at any pqlz can be computed.

Figure 3 shows plots of current density versus distance for
the fundamental, second harmonic, and third harmonic at y = 0, 73,
the upper limit of validity of exact harmonic determination, In
Figure 4, the fundamental current density is plotted for various values
of y. The shift in the current maximum from the quarter space-
charge wavelength has been observed experimentally by Mihx-am5
using a two-cavity klystron with a movable output cavity.

If the equations which have been presented are correct, they
must reduce to Webster's ballistic equations which are known to be
valid near the excitation plane where space charge effects are
negligible. In Webster's theory the magnitude of the total r-f

current density is given by

Jl
r

o

=z 2 ; J'n (ng'- pez) =2 ; Jn(nx) . (89)

Since space charge effects must be negligible, this requires that

pqlz < ;— , that is, the region under consideration is one in which
electron bunches have not yet formed. At this point sin pqlz % pqlz
W
—L ;, and the magnitude of Equation (85) is then

°
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J

z 2 1 3,9 3
(90)
TS

= x+x -g X +§x .

The amplitudes of the current densities of frequencies nw are given by

ns=l]: #:x-%x3 , (91a)
°
J

n=2 -.Tz£‘=xz ) (91b)
o
Jg3

n=3: -Ji—=%x3 . (91c)

From Equation (89), by developing the Bessel functions into a power

series for small arguments,

n nx\%
Jzn - 2&?’:‘) ( R ir-:—z;)—l + ) . (92)
o

As expected, Equations (91) and (92) are in good agreement.
If the next term in the Bessel function expansion is introduced,

Equation (91a) would become

J
1
Tzl =x-§ X3+T%Z- x5-.co . ‘93)
o

This indicates that if higher than third order harmonics had been
considered, the shift in the current maximum with increasing vy
would be accompanied by an increase in amplitude rather than the
slight decrease shown in Figure 4. This increase was present in
the experimental observations of Mihran5 mentioned previously.
If values of gap current are desired, they may be obtained
by multiplying the harmonic current densities by the beam cross-

sectional area S and by anaverage of Joz(ﬁtnr) over the cross-sectional
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area. That is

2 2
In =S [Jo (ptn rep) * J'1 (Btnrep)] Jzn ) (93)

Output gap voltages are then given by the product of harmonic
gap currents and harmonic impedance where the impedance in this

case must include the effects of beam loading.
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CONCLUSIONS AND RECOMMENDATIONS

The analytic space charge wave solution shows that the
harmonic densities are made up of severa! :omponents. Each
harmonic has a small amplitude compornent which has a distribution
in space controlled by the harmonic reduced plasma phase .onstant.
The mair components however, result from the fundamental
frequenc’ beam disturbance and therefore have spa ial distributions
controlled by the fundamental reduced plasma phase constant. In
contrast to Weuoster's ballistic theory, the total amplitudes are
related dir :ctly to initial harmonic velocity modulation. This
suggests that harmonic suppression may be accomplished by
cancellati~n ~f harmonic velocity modulation at the excitation
Plane. The magnitudes of the harmonics can be accurately pre-
dicted up to a normalized drive level given by y = 0. 736 and the
fundamen'al up to y = 2.8 where y :s the ratio of operating to
fundamental reduced plasma frequency multiplied by the ratio
of one-hals the equivalent infinitesimal gap r-f voitag.: to the
beam voltage. Choice of y determines the optimum drift tube
length for maxin.um fundamental output.

Examinat.on of Figure 3 shows that, at y = 0. 73, the
maximums f a’'l current density components occur at the quarter
space-charge wavelength, and a decrease in harmonic level can
be obtained only at the expense of the fundamental. At higher
signal evels, Figure 4 shows that the fundamental maximum occurs

at increasingly sh-rter drift lengths, while the harmonics exhibit
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dips in the region of the new fundamental maximum. It appears
that parametric energy coupling is taking place at some multiple
or multiples of the plasma frequency and that the ratio of harmonic
output to fundamental output can be decreased with an increase

in fundamental, by shortening the drift length between cavities at
some large drive. The ultimate results of using a drive of

y = 1. 63, for example, and a drift length pqlz =z 70° must be
found by solving the large signal equations in a computer.

The good agreement between theoretical prediction of
fundamental current density behavior and the experimental evidence
of Mihran5 suggests that a fifth order theory, which would give
second and third harmonic saturation terms, would be of even
greater usefulness in controlling spurious harmonics. Magnitude
and direction of necessary changes in parameters could be pin-
pointed right up to the region of electron overtaking thereby

saving valuable computer time.
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APPENDIX A. SMALL SIGNAL COMPUTER RESULTS FOR THE SAL-36

The small signal equations were used to solve for displacements
and velocities in the SAL-36 klystron amplifier. 6 To accomplish this,
an IBM-650 digital computer was used to solve the systems of equations
Sl and S2. The Milne method of numerical integration was used and an
error of one per cent between "Predictor' and !'Corrector" was tolerated.
In using this method, all initial variational displacements and velocities
were assumed to be zero, thatis, v=p=w=q=0.

Electric field configuration and limits were determined from
low-frequency measurements made in an electrolytic tank. 7 Verification
at high frequencies was obtained by using perturbation techniques. 8
Polynomial approximations to the experimental curves were found by

employing the method of least squares and are

2 2 4 4 6 6

A(z) = 0.6000 - 2,1413 X 10 2z~ +2.7524 X 10 z - 1.0415 X 10 =z

2 2 5 4 7 6

B(z) = 0.1260 - 2.9369 X 10 =z +1.3899 X 10"z -2.5014 X 10 =z

+1.5467 X 10° 28

The field strength falls essentially to zero at £ = -1,65d and
2=1,65d where z = 0 at the center of the cavity.

Solutions were begun at z = -1,65d and carried in steps of
0.001 meters to a point one wavelength beyond the circuit field limit.
The program used is shown in Figure 5 and curves of results are
given in Figures 6 and 7. As mentioned in the text, the results must
be modal analyzed before they can be used as initial conditions in

the large signal case.
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Insert

angign?g
Set up ’

for r=Q 4

- 3 Is 2 No| Is 2 $

Set Initiol > 1.65d > 1.654d

Conditions | i
Vsl

Milne Method Compute Set Compute Set
Subroutine N Freld Field =Q Field Field=0

— 1 70

L No Punch
Out Compute Compute
Ie.n_7”':4-.a.1 S| s2
Punch Punch
Z,Vp, W, R:4 Z,Vp. Wy, B, q,

:

Compute

Next Punch
Point

N End of
Solution

rs ;‘“ r:rT,
Set up
for r=r,
[Stor]

Figure 5. Small Signal Computer Program.
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Constants required to obtain solutions are

- —°z- - -3.4873 volt

mu
o

= -5,4277 meter.1

cos 31.2z

-l
"

cos (B z + &)
e

sin 31.2z

sin (ﬂez + &)

3
3 X 10 volts

<

5.08 X 10-2 meters

[- 7
n
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APPENDIX B. LARGE SIGNAL COMPUTER PROGRAM FOR THE SAL-36

This Appendix has been added to show, in some detail, a practical
application of the large signal equations up to the point of actually finding
solutions using a digital computer. In this example a wavelength in wt
is broken up into twenty electron discs, each disc being eighteen degrees
wide (Oo = 18 degrees). The differential equations then apply to the
ith disc and i varies from zero to twenty. The modified versions of

the required equations are then:

~

aW, E . £ .
X i _ ezl szi
1+ Wy — - Vg, IR (26B)
e
fod
88, W, ,
- 'W = 1_+Wi' . ( 9B)
2 2 ,
Real dln - . o [‘Io (ptn rep) 1 mtn x'ep)] ¢ zn(Y) A0
dy P d o
20
Z cos (nei) cos (nY) - lin(nei) sin (nY) ,
i=1
dlI i [J 2 J 2 (Y
Imag n _ o Lo (ptn rep) * 1 (ptn rep) W zn( ) a0
dy wped o
20
Z sin (nei) cos (nY) + cos (nei) sin (nY) . (52B)
izl

The equation numbers given here refer directly to the derived equations
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in the text. Thus, Equation (52B) is the modified version of Equation (52)
and has been broken up into real and imaginary parts to facilitate solution.

In Equation (26B)

3 !

p' oY) |V

Eczi = Z 2 3 l nl cos (bn-i-nY +n6i) . (32B)
nsl

The constants in this equation are n and d, and Y is the independent
variable generated by the computer; p'zn(Y) is determined from
Equation (39) and the values of A(z) and B(z) are given in Appendix A,
remembering that Y = ﬂez can be used to convert to A(Y) and B(Y).
In all cavities except the first, an estimate of |Vn| and bn must be
made, and convergence to the known harmonic impedance zn is
required aa explained in the text.

Evaluation of E ezi 18 slightly more complicated. In modified

1

form,

5 o 2 20 %,

E, - -%- 2v B, Z [r(ej -0) + :—%v- G(ej-ei)] 80, . (49B)
w ng j

In the lossless case to be considered here, 6n and Un are real and

the expressions for F(Oj - Oi) and G(e.i - Oi) become

;&8 z
F(o, -9) = o Zl —— sinne, - 9) (44B)
n=
R :
- n 3 - »
Glo, - 8,) = 3 n; 2 einn(e -0) (49B)

6nz is a function which has a maximum value of unity which it approaches
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at extreme high-frequency operation. When Snz =1, the F function
becomes a sawtooth which can be evaluated by direct summation. Since
6nz is an increasing function of n, it is much easier then to make a
summation of the series (1 - 6n2) which represents the difference

between the actual function and the linear sawtooth function.

Symbolically,
2
5.2 (1-5 )
ZL sinn(6.-0.) = Z 1 sinn(6 -0.) - Z —Dn_
5 0 j il T ~ [ a o smn(ej-ei) .

For the particular case of the SAL-36, the summation was carried
out using twenty terms and the resulting function F(0 i -ei) is plotted
in Figure 8. .

The series representing G(Oj -ei) converges rapidly as it
stands and a plot of this function, after summing over twenty terms,
is also shown in Figure 8.

Polynomial approximations to the curves in Figure 8 were
written using the method of least squares. Finite disc widths were

also accounted for in arriving at

Kk
F(o -0 = Z a [(ej-ei)zo] for

k=1,3,5

0 e|<?'1r
(J‘i) m [

K
F(o,-6) = Z a [( -|(ej-ei)|) -f-;] for

2w
(Gj-ei)| >I0

' k=1,3,5
OG-Zb eezokf ee‘<z"
Ot = s B 7 °or |88 <@
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20| ¥ 2
Gle,-6,) = k=2;5 b [( - lie;-8,)) ﬁ] for |o,-0) > 35

All other terms required to solve the equations are constants
of the tube and its operating conditions, and it remains now to determine
the initial conditions from the small signal solutions.

Since only the fundamental was considered in the linear portion

of the tube, the constants K. and KZn of Equation (38), become

iln

Kll and K, . The small signal computations have given

P jlwt - B_2)

z . e

-5-; = [v(z) + Jw(zﬂ e ,

u, _ jwt - B_z)

T, * Pt2) + jatz] o °

) P, W,
Realizing that §=p, —= , = = W, and o =60 + 8, the small

° °
signal results combined with Equation (17) and the constants K1 1

and K21 of the modal analysis result in initial conditions given by
60 =0+ pe [Kll [va(z) cos @ - wa(z) line]

+ KZI [(vp(z) cos 9 - wp(z) 8in@) - (va(z) cos 9 - wa(z) sin e;‘] ,

W= K“ [p‘(z) cos 9 - qa(') sine]
+ KZI [(pp(z) cos 9 - %(z) sinb) - (pa(z) cos 9 - qa(z) aine)]

These are evaluated at the arbitrary starting point of z = 0.2847 meters

which is normalized to Y = 8. 883 radians.
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Summary of Procedure:

The small signal equations were solved from the limit of
the circuit electric field in the first cacity to the point Y = 8, 883
radians. At this point they were modal analyzed and became initial
conditions for the large signal solution which is to be carrieu
through the remainder of the first region to the limits of the
circuit electric field in the second cavity. An initial estimate
of induced cavity voltage (magnitude and phase) is made and in-
serted into the equations. The solution then proceeds through
the circuit field region and harmonic cavity impedances are
computed from the results. If the computed impedances do not
agree with the known impedances, new estimates of voltage are
made and the solution is again run through the circuit field region
of the second cavity. This continues until the impedances agree.
At this time the solution can be continued through the second
drift region until the circuit field limits of the third cavity are
reached. New estimates of voltage are then made and the con-
verging procedure followed again. The final value of In
determined in this way is the current which flows in the output
circuit. Of course, the entire process could be continued for
klystrons having more then three cavities.

A schematic of the SAL-36 is shown in Figure 9 and a

large signal computer program is presented in Figure 10.
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START

[insert initiol Condition]
Y,=14.814

OF Y, *20.055

Comonele 5

Y=Stopping Vaolue of v

G |y av v
3

[Compute wi(v*); 6, (v¥]
¥

L

A dp |
Set Eczni-'ﬁ 0 @
.|32.248—-DY.
37.490—+Y%
di
Compute E,p ; '&'e'

‘ ¢ f| L2 w, H 8,
[Compute wialv)inei, 23]

I=1,2,.......,40
@:; e 20
dé

— | 40 | 41— |

Punch Y* ;av;
wily*); 8(vy")

” s
w' ._..w‘
Y Y |
al(P) . ai(ﬂ
di
il
Punch T

STOP

Figure 10, Large Signal Computer Program for the SAL-36,
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ep

-i

r'y:)

tn

In

The necessary constants and initial conditions are

98.3 X 103 volts

5.275 X 10° second”}
8 -1

1.69 X 10 meter second
-4 -3

1.70 X 10 coulomb meter

31.2 meter

1.645 X 109 lecond-1
-2

5.08 X 10 meter
-2

1.778 X 10 meter

28. 3 ampere

en .

il radian

65.5 meter'l n=1
-1

79.1 meter ns=2
-1

87.5 meter n=3

1.175 n=1

1. 253 n=2

1.33 n=3
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2n

2.22
1.945
1. 67
-0. 06085
+0. 03074
-0. 00411
-0. 04901
-0.01745
+0. 00227

4
3.909 X 10 volts

-90 82

0. 310
0.545
0. 690
0.488
0. 345

0.200

%
"

]
"

]
[1]

;

Initial estimate

Initial estimate



2

2
Jo (ptnrep) + J’1 (pmrep) = 0.7135 n=1
= 0,606 n=2
= 0,548 n=3
2 -2 4
p.'zl(Y) = 0.9847 - 0.9283(Y-17.435) + 6.670 X 10 (Y -17.435)
-3 6 -3 8
-7.348 X 10 (Y -17.435) + 3.825 X 10°7(Y -17.435) .
2 -2 4
p'zz(Y) = 0.9969 - 0.8625(Y -17.435)" + 6.493 X 10 (Y -17.435)
-3 6 -3 8
-6.690 X 10 (Y-17.435) + 3.35]1 X 10 “(Y-17.435) .
2 -2 4
p.'z3(Y) = 1,0084 - 0,7964(Y -17.435) + 6.314 X 10 (Y -17.435)

- 6 - 8
-6.031 X 10 3(Y-17.435) +2.877 X 10 3(Y-l'7.435) .
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ABSTRACT

This paper considers aspects of electron motion in cylindrical
electron beams focuesed by a magnetic field and moving within a cylindrical
drift tunnel. The motions of electrons in such beams are of particular
interest in the study of the operation of klystron generators of microwave
energy.

Fundamental equations for the motion of electrons in magnetically
focused beams are developed and combined with the Maxwell equations:

The solutions obtained are aprlied to the study of the conditions existing
in perturbed magnetically focused beams. Small-signal solutions are
developed for both relativistic and nonrelativistic cases. For the special
case of the Brillouin beam modulated by a gridless gap, large-signal
solutions are found. Equations suitable for the study of the modulation
of cylindrical magnetically focused beams by gaps are presented.

Application of the large-signal solutions to the problem of harmonic
generation in Brillouin beams is considered. It is found that it is possible
to adjust the beam conditions sc that harmonic generation will be enhanced.
Application of the large-signal solutions to the problem of current saturation
in klystrons is described, and methods of reducing the output of unwanted

harmonics are considered.

vii-~



INTRODUCTION

In recent years there has been considerable interest in the production
of high-power microwave energy. In conjunction with this interest con-
siderable attention has been devoted to the theoretical analysis of the operation
of linear-beam microwave tubes at high-power levels. Much of the analysis
has been devoted to the study of the behavior of linear electron beams
excited by a high-level of modulation.

This paper considers the motions of electrons in magnetically
focused beams. Much attention has been devoted to the small-signal analysis
of perturbed beams focused by magnetic means, but thus far no consideration
has been given to the large-signal behavior of such beams. A large-signal
solution, if it could be obtained, would furnish us with a better understanding
of the behavior of microwave generators operating at high-power levels.

It is the fundamental aim of this paper to present an analysis of the large-
signal behavior of the Brillouin beam and to state some applications of the
large-signal analysis to the operation of microwave klystrons.

Basic to the analysis of the motions of electrons in beams is the

combination of Newton's and Lorentz's laws in the equation of motion:
mg =e(E+vxB) . (1)

In the Eulerian description of the motion, Equation (1) is rewritten

in the form

ov e
F{..{-!.(vz):r—ﬁ(E'F\_le) . (2)



The velocity v has two components: (a) the d-c velocity produced
by the focusing system used to align and accelerate the electrons after they
leave the cathode, and (b) a component which will be produced by the
modulating structure. We shall denote the d-c part by Yo and the part
consisting of perturbations causes by the modulation by V. We refer to
v, as the d-c velocity, since it does not normally vary with time.

We may rewrite Equation (2) as

v
3t P tY) LV +?) ] =n(E + ¥y x B) (3)

where n = e¢/m. For the moment, let us assume that Yo has no spatial

variations so that A 0. Then Equation (3) becomes:

v
Tty N+ T (9Y) =n(E + v x B) . (4)

If I\_rol >> ly_l then the last term in the left-hand side of Equation (4) may
be neglected. This is the amall-signal assumption, and is usually made in
the study of the operation of a device at low-power levels.

Equation (4) involves two types of co-ordinates, the time, and the
set of position co-ordinates used to fix the location of the electron in space.
The first term on the left-hand side of Equation (4) accounts for the explicit
change of velocity with change in time at a constant position. Of course,
the electron will not remain at a constant position, and it is the purpose
of the last two terms on the left-hand side of Equation (4) to account for
changes in the velocity of the electron caused by dependence on the position
co-ordinates. Change in the position co-ordinates may, of course, be

caused either by the d-c velocity of the electrons or by the velocity resulting
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from the perturbations. If the disturbance is small, the change in position
resulting from the velocity associated with the perturbations will be small
compared to the change in position resulting from the d-c velocity, and
the last term on the left-hand side of Equation (4) may be ignored.

However, if the beam is strongly excited, the last term on the left-
hand side of Equation (4) becomes important and may no longer be neglected.
The physical process that produces this effect may be described as follows:
The excitation produces motions o’ the electrons that are not uniform in
space, and as a result, electric and magnetic fields are set up within the
beam. For small values of excitation, the values of electric and magnetic
fields are determined by the linearized form of Equation (4), the form with
the last term on the left-hand side neglected. However, these electric
and magnetic fields in the beam will stimulate further motions, and, if
the values of excitation are large, these new motions must be accounted
for. This may be done by using the nonlinearized form of Equation (4).
Just as the equation of motion is nonlinear if the excitation is high, the
beam also is nonlinear.

Some of the theoretical analyses of electron beams can now be
considered in the light of the preceding discussion. The first theoretical
analysis was performed by \Vebstc.er1 using a ballistic approach. Webster
analyzed the motions of an electron beam excited by a gridded gap, neglecting
the effects of space charge, and was able to deduce an expression for the
efficiency of a klystron. His method, however, suffers from the defects
that no space-charge effects are taken into account and that the electro-
magnetic fields outside the excitation region are ignored. Thus the results

can validly be applied only to beams of very low density in which the electro-



magnetic effects are small in comparison with the ballistic effects.

In an effort to overcome the defects of the ballistic approach,
Hahnz and Ramo3 combined the linearized form of the equation of motion
with the Maxwell equations. They found that the electron motions should
have a wave-like character, periodic along the beam. Their solutions
have been termed ''space-charge waves. '

Both these methods of analysis assumed that the electrons were
confined to move in a direction parallel to the axis of the beam. This
is approximately the case when the magnetic field used to focus the beam
has very large values. In actual devices, however, the values used for
the magnetic focusing field are close to the minimum possible value for
stability of the beam, in order to save space and weight. and to reduce
the cost of the focusing system. In such cases, much of the electron
motion will not be in a direction parallel to the axis of the beam. There-
fore we must examine some of the methods used in the analysis of the
properties of focusing systems and the characteristics of the high-frequency
behavior of magnetically focused electron beams.

Conditions for the stable focusing of electron beams by magnetic
fields were first investigated by Brillouin,4 and subsequently by Wang.s

6 7 8

Samuel,” Brewer, and Dow.  Underlying these analyses is the assumption

of laminar flow, which requires that the paths of the electrons not cross
each other. This assumption is made necessary because the functions
that describe the electron velocities must be restricted to being single-
valued. Laminar flow is not achieved in practical beams, as has been

9

demonstrated by Harker,’ but there is no reason to believe that it is not

a good approximation, if the thermal velocities of the electrons emitted



from the cathode are small with respect to the accelerating potentials,
which is usually the case.

It is also assumed that the electrons leave the cathode with zero
potential energy and velocity. This assumption is also valid, and when
taken with the assumption of laminar flow, implies similarity of electron
paths as the electrons move along the beam.

The authors cited assumed that the electric and the magnetic fields
associated with the focusing system were axially symmetric, and that the
charge density was uniform at all points in the beam. Only careful cathode
and gun design could approach these conditions in practice, and these last
assumptions are probably more restrictive than those previously stated.

Wangs has shown that the angular frequency of rotation of electrons
about the axis of the beam is strongly dependent on the amount of magnetic
flux threading the cathode. If no magnetic flux threads the cathode, and
if the other assumptions mentioned are valid, then we have the focusing
conditions specified by Brillouin:4

1. All electrons in the beam will have an angular frequency equal

to the Larmor frequency, wp where w = nBo/Z, and Bo
is the strength of the applied magnetic field.

2. The radial velocity is zero, the axial velocity is everywhere

constant, and the charge density is uniform.

When the Brillouin conditions are satisfied, the value of Bo is the smallest
that may be used for stable focusing. If there is magnetic flux threading

the cathode, the value of B required to produce a stable beam will be
larger than the Brillouin value and the surface of the beam will be rippled
or ''scalloped. '’ Wangs has established conditions fo: stability in such

beams.



Now that we have reviewed the analysis of magnetically focused
beams in the unperturbed state, we shall briefly consider the analyses
that have been made of magnetically focused electron beams excited by a
modulating device.

The problem has been considered by Rigrod and Lewis, 10 Brewer,“

Labus,u and Palchke.13

Their methods are all essentially the same:
The linearized form of Equat{on (4) is combined with the field equations
to yield wave-like solutions. However, they differ conliderabiy in the
methods employed to calculate the phase constants of the waves, the dif-
ference centering around the problem of the boundary conditions to be
used at the edge of the beam. ‘

Figure 1 shows the model for an excited magnetically focused
electron beam. The surface of the beam is rip'»pled after excitation. The
boundary conditions are that Ez the aﬁal, and Er . the radial electric
fields caused by the perturbation. be continuous at the edge of the beam.
However, the location of the edge of the beam is a function of the time,
and it is difficult to develop a method of matching the electromagnetic
fields at the constantly shifting boundary of the beam; therefore the beam
is represented by the model shown in Figure 2. The beam is not rippled
and the location of the edge is constant in time, with the ripples replaced
by an equivalent surface charge density Py OF an equivalent surface
current J . This replacement permits equating of the fields inside and
outside of the beam at r =b.

The disagreement among the various authors centers around the
10

method to be used in computing the surface current. Rigrod and Lewis

use only the ripples in the boundary layer region to calculate the surface

-6-
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current, while Labus ™~ and Paschke1 think that the ripples throughout
the beamm must be considered. In addition, Paschke uses a somewhat
different formulation of the equations of motion from that used by other
authors. In this paper the method of Rigrod and Lewis is used in for-
mulating the boundary conditions.

We have so far reviewed only small-signal theories of electron
motion. Work on the large-signal problem has thus far been restricted
to the case of the beam in which all electrons are confined to. move in a
direction parallel to the axis of the beam. Studies of the large-signal
behavior of the confined beam have been made by Paschke, 14, 15,16
Romaine,” Blair,18 and Engler.19 The method used has been to combine
Equation (1) with the Maxwell equations. The resulting nonlinear differential
equation has then been solved by the method of successive approximation.
Beams of both infinite and finite geometry have been studied.

The work just described has been restricted to the case of thin
electron beams, where beams of finite geometry have been studied.
Recently, OlvingZo has succeeded in deriving a nonlinear theory for the
thick, cylindrical, finite beam. His results, when applied to a thin beam,
reduce to those found by the other authors.

No work has appeared to date on a nonlinear theory of a magne'tically
focused b;am. The remainder of this paper will be devoted primaril)} to

the consideration of the development of a nonlinear theory of the Brillouin

beam.



FUNDAMENTAL EQUATIONS AND ASSUMPTIONS FOR THE ANALYSIS
OF THE ELECTRON MOTION

The following assumptions are basic to the analysis:

1. The electric and magnetic fields associated with the motion are axially
symmetric.

2. The electron flow is laminar, and the initial velocity of the electron
beam is uniform at all points in the beam. The charge density of the
unperturbed beam is uniform at all points inside the beam and is zero
outside the beamm. The charge density of the unperturbed beam will
be denoted by Py -

3. The radial velocity of the electrons in the unperturbed beam is negligible
with respect to the other velocities involved in the problem. (Thus
any effects resulting from the scalloping of the d-c beam are not to be
considered.) The axial velocity is small with respect to the velocity
of light.

4. The beam moves within a perfectly conducting drift tunnel and is excited
by a gridless gap in the tunnel. The drift region is free of any electric
and magnetic fields caused by the beam itself, except for the field of
the focusing magnet.

5. Thermal effects may be ignored.

The co-ordinate system used is cylindrical polar. Distances in
the axial or z direction are measured from the center of the modulating
gap. Radial or r-direction distances are measured from the central axis
of the beam. Azimuthal or 6 direction distances may be measured from
any convenient reference. The co-ordinate system to be used is shown in

Figure 3.
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Figure 3. Description of Co-ordinate System Used in the Analysis.

Assumption 1 requires that 8/86 = 0, which is reasonable, since
the structure surrounding the beam, and the beam itself, are presumed to
be axially symmetric. Assumptions 2 and 3 are never valid in real
structures, but experimental work by Gilrnour21 has shown that beams
with properties closely approximating the ideal behavior assumed may
be produced. Assumptions 4 and 5 are justified in actual beams. Appendix
B gives an analysis of motions in beams where the initial velocity vzo‘
is not much less than the velocity of light.

We are now ready to .begin the analysis. In cylindrical co-ordimtes,

Equation (1), the equation of motion, may be written

avr 8vr 8vr vg
Tt VeI tVaTe T TnE tVeB m VBl o (5)
v ov v v v

0
ﬁ_+vr-5§9+vz—5-ie'+ 1;'e="(E9+szr-vrBt) ’ (5b)
avz 8vz 8vz
Tt Ve Ie t Ve T - 1B, tVeBg - veBY) (el
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The subscripts to the quantities in Equation (5) refer to the components
in each direction.

We shall need one other set of basic relations, the Maxwell

equations:
v _E_ = p/Co ’ (6)
v-B=0 (7
9B
VX E = -g= (8)
or
8E oB
Rl il (8a)
8(rE,) 9B
1 0 z
T BT - "B (8b)
SOE 9E 9B
z r = 0 (BC)
BT " %z - ¥
and
vx§_=p°P!+—1-z§t§- ; (9)
C
or
9B 9E 8E
8 _ 1 1 9 z r
" 2 "r[;ﬁ"Er“v*'ﬁ- ' (9a)
8B_ 8B 9E 9E
r z 1 1 9 z 0
B W -2 "e[?ﬁ'""r’*-ﬁ- tee | (9%)
9E 9E
1 9 1 1 9 z z
¥ or "Be = 2 Vz[?a?('Er’*T.— te ) (9¢)
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The two sets of equations can be seen to be related to each other, since
the velocities appear in the Maxwell equations and the electromagnetic
fields in the equations of motion.

The first step is to consider the motion of the unperturbed beam.
The fields to be considered now are those caused only by the space charge
of the unperturbed beam in the tunnel and the focusing magnetic field.
As a consequence of symmetry and the assumption that there is no d-c

axial electric field in the drift region, we have

(The subscript o will be used to denote steady-state quantities.) A
uniform magnetic field -B-o = 302 is assumed to be present to focus the
beam, where 2 is the unit vector in the z direction. Since v__ =0

ro

by assumption, and Voo 18 constant, the equations of motion reduce to

-rw_ = nEro + nrwoBo , (10)

where w, is the angular frequency of rotation of the electrons about the

axis of the beamm. Maxwell's equations reduce to

1 (rE_) p
- L. (41a)
r or Eo )

aBzo
"By T HoPo TY% ’ (11b)
19 )
T 3r rBeo = Mo Po Vo : (11c)
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Next let us define
W - ———— . (12)

In simple space-charge-wave analysis, it is found that wp is the

frequency of oscillation of an excited infinite beam of electrons; then

2
w
E_ = z% r , (13a)
B =B - w re (13Db)
z0 o "o po o '
2
w Vzo!' 13
By, -—P;n_cz- X (13¢)

In practical cases we may set

B _ =B

z0 o
and
Beo =0 ,
since v << ¢. Now define
z0
nB,
W, = —g— . (14)

Combining Equation (10), (13), and (14), we get

w_ = -wL(i j-,km) . (15a)

where

(15b)
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For the Brillouin case km = 0. We shall be concerned only with cases
for which Wy = -wL(i + km) .

Equations (15a) and (15b) express the conditions for equilibrium
in a magnetically focused beam. Physically, Equation (15) expresses the
conditions that space-charge, magnetic, and centripetal forces must add
to zero.

The motions of electrons under the influence of a disturbance can

now be considered. Let

v, =V, . (16a)
Vg = TW, + Ve s (16b)
v =v._+V . (16c¢)
z zo z

3 g oV ‘-}‘g
- SRR A A i
= n(E, +V,B, +ru B, -7,B,-v, By . (17a)
d‘v‘e av‘e We Vr‘Ve - .
dat - ka“Lvr + vr or ¢ vz Pz T ° "‘Ee +E(vzo 4""‘z)gr' vrgzj ’
(17b)
v, v, o7, -
TtV Y, g B By - (re vV BT, (17¢)
where
d _ 9 )
aE = 5? + le s; . (18)
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Besides the velocities and the electromagnetic fields, there is

another vector variable quantity which is of interest. This is the polar-

ization distance, which we define as the displacement of any element of

charge dq from its position in the unperturbed beam under the influence

of the perturbation. The displacement is, of course, caused by the

perturbation.

Let T, eo. z_ be the co-ordinates of an electron before any

o

disturbance takes place. Then

At a time t = At,

r+ Ar =

0+a40

z + Az

r=or o+ Pr (r, 0, z,t) , (19a)
Pe(r. 6, z, t)
0 =0, +tuwtt ——————— ' (19b)
z =z +v t+ l:’z (r, 6, 2,t) . (19¢c)
ro+P (r+ar, 6+40, z +az, t+a) (20a)
Po(r + Ar, 6+ 40, z + Az, t + At)
6 +w (t+ aAt) + R (20b)
o o r + Ar
z, + Vzo(t + At) + Pz" +Ar, 0+46, z + Az, t + At) . (20c)

Substracting Equations (19) from (20) and letting At approach

zero, we find:

OPr
ve =3t t(v- V)P ’ (21a)

45



9P

- z . '
Vz = Vzo + -a-r- + (! v ) PZ , (Zib)
8Pe Pe
ve=r°o+W+(!'V)Pe'Tvr . (21c)

We may now solve Equations (21) for the velocities:

(22a)

’ (22b)

<
"

. 8Pe BP‘ bPr 8Pe 8Pr GPO Pe
8-t "\t W)l -\ )t T\ T
+8Pr DPO 8Pz+ OPO“F’e -BPz
| e ooT B

. -1 ’
P P 8P 8P
[( . 1?') (‘ - '5?') - 15?’] : (22c)

There are now two possible methods of obtaining a nonlinear dif-

ferential equation that can be used to describe the properties of the motion.
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We can work with the velocities directly or we can substitute Equation (22)
into Equation (17) and use the polarizations as the basic variables in the
problem. For our purposes, we shall find that it is easier to work directly
with the velocities. Appendix C gives the nonlinear equations of motion
with the polarizations as basic variables.

In order to solve Equations (17) in conjunction with the field
equations, it will be necessary to assume that a solution is possible by

the method of successive approximation. We assume that we can write

L d

X=31+2‘2+2‘3 + .., (23a)
§=g1+§2+£3+ , (23b)
B-B, +8, +B, +... . (23c)

Each of the terms in Equation (23) is presumed to be less in

magnitude than the one preceding it, i.e.

'Yi' >> |2‘z| >> |’!"3| > ...

The quantities are presumed to depend on a parameter € < 1,
so that the series will converge. The method of successive approximation
is a means of finding the coefficients of the powers of €.

Physically, this is a justifiable method, since we expect that the
beam quantities will have a first-, second-, and third-harmonic part
and that the amplitudes of these will decrease with increase in the number
of the harmonic. The method is also consistent with Maxwell's equations

since these are linear and hence permit superposition of solutions.
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Substituting Equation (23) into Equation (17) gives:

dvrn + 2k + v avr,n-k + avr.n-k . veKVB.n—k
dt m“LYon rk or Vak oz r
=T

= n(E v T B, -v Bo) (24a)
dv ov ov v .,V
én 8,n-k 8,n-k rK 6,n-k
dt kavarn (vrk 3r + vzk bz + r )

= n(E, +v,_ B_) (24b)

ov ov
n-k z'n‘k -
(vrk —Yg'r_- t Vek —Fz_') = (B, - LR B (24c)

The terms arising from v x B have been ignored on the right-hand side
of Equation (24). This assumption is justifiable for slow beams.

From Equations (22) v}e find that

R @
dP,,

Ve1 = -—a-t-— ’ (ZSb)
dpP

Vo= _d!t'.l. g (25¢)
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with

P=P, +P, +Py+ ... . (26)

as before. We may now combine Equations (24) and (25) to find

a®p dPgy

—Et—z-— + kawL - = n(Eri + 1‘0)0321 - vZOBei) ’ {(27a)
dzpei dP ,

2T " EmeL o T ey *VaoBr) (270)
a’p_,

—7 = n(E,, -ro B ) . (27¢)

We notice that Equations (27) are much simplified if km =0.
As stated previously, this is the case of Brillouin flow. We may, of
course, combine Equation (27) with the Maxwell equa.ti‘onl and solve for
the case km # 0, but the results are complicated and not easily manipulated
to obtain the nonlinear solution desired (see Appendix C).

The case of Brillouin flow is 1nteresting from another standpoint.
The experimental work of (.‘uilmom'21 shows that the assumptions at the
beginning of this section are nearly satisfied for a well-designed Brillouin
beam. Therefore we restrict our attention to the Brillouin case. Another
reason that the case of Brillouin flow is of interest is that many practical
devices are designed so that very little or no magnetic flux will thread
the cathode, precisely one of the main conditions required for Brillouin
flow. Although Brillouin flow is an ideal state of behavior not actually

found in real devices, it is closely approached in many microwave generators.
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Appendix D shows that the results of the analysis for the case of the
Brillouin beam may be applied when the magnetic focusing field slightly
exceeds the Brillouin value.
We assume that B_, =E_,, = B_, = 0. In other words we see if
ri o1 zi
a purely transverse magnetic solution can be obtained for the first-order
equations. Combining Equation (27) with Equations (8c), (9a) and (9c),

we obtain

2
2 oP 2 2 w
d 2\ [1 o z4 | 9 1 9 _
(;z*“p)<Fa?r*s;—+;—zPzi'*z—zpz1'-§1’z1>-°
z c 8t c
(28)

This is the wave equation for the first-order solution. There are two

possible solutions for Equation (28):

Case I:
Hwt - )
Pzi = Jo(yr) e ,
where 2
2 2 W @
(L e S
c c
Case II:
jlet-B,)
Pzi = Io(yr) e .
where
2 wz
2 2
Vept -t e
c c
For eachcase v - E, = 0. This means that the transverse electric and

=1

transverse magnetic modes are independent in the first-order solution.



Other solutions of form }F’z1 = f(r) erPt are possible. We shall, however,
find that these are not excited.

We now wish to consider the relations between the fields at the
edge of the beam (but inside it), and the fields on the outside of the beam.
As discussed in the introduction, the electromagnetic fields must be con-
tinuous at the edge of the beam, which is the basis for the matching of fields
on the boundary. The continuity of the longitudinal electric fields at r = b
implies that the variations with z of the longitudinal fields inside and
outside the beam will be the same. This means that if E:z is known inside
the beam, it is also known outside the beam, and using Maxwell's equations
one can also find Er outside the beam.

For the methods used here for satisfying the boundary conditions,
the beam must be replaced by an equivalent smooth beam with a surface
charge density; otherwise the boundary conditions are dependent on the time.

The surface charge density is given by

+Ar
Pglz:t) =j’ Epo + pylr, 2, t)Jdr
b

where b is the unperturbed radius of the beam, and
Ar = Pri(b + ar, z, t)

In our case Py = 0, and so
Py = Po AT . (29)

To find Ar we expand I?M(b+Ar, z, t) about b by Taylor's theorem

.21-



and ¢W~op terms of greater than first order in Ar. We have

_ )
pri(b’ z,t) + Ax [3—17 Pri(r,z,t)]

r=b

P
-
1

and

g
-
i

= Pri(b’ z,t) + Pri(b' z,t) [56? Pri(r,z, t)] .
r=b

The lsk-st term is clearly a second-order quantity, so

Ar = Pri(b’z’t) . (30)

Combitning Equations (29) and (30), we have

0 = Pg Prylbrzit) (31)

The lwioundary condition may now be written as

Ps
E + —
Er r €
E__ = —'—E—— at r = b (32)
z /out z in

I Both Er and Ez outside the beam are found by straightforward
solutit'n of the Maxwell equations for free space, subject to the boundary
condifo.on that Ez must be zero at the drift tube wall and the drift tube radius

is a.! We have two cases:

Carsge) A
_ p j{wt - P2)
E, = L__No\ra) J (Fr) - N (T1) Jo(ra)] e
out
where 2 >
2 w
r° = :z . B

.22



Case B:

e out [K,(ra) 1 (rr) - 1 (Fa) K (7)) Jlwt - B2)
where
2 2 wZ
r = p - __z
c

We now combine these results with Equation (32). There are four cases
for study, corresponding to combinations of the two sets of solutions in-

side and outside of the beam. We may tabulate these as shown in Table I.

Table I. Forms of Equation (32).

Fields Inside Fields Outside
Case A Case B

Case I IA 1B
ase Forms of Equation (32)

for study
Case II 1A IIB

Case I A in the table corresponds to the wave-guide modes. These
are the electromagnetic waves that would propagate if the tunnel were
considered as a wave guide partially filled with the beam. The phase
velocity of the Case I A waves is approximately equal to the velocity of
light. The propagation characteristics of the waves are slightly different
from the characteristics of waves propagating in a vacuum-filled guide,
but this is due, of course, to the presence of the beam.

Case I B has no solution under any conditions. There are thus no
modes of propagation corresponding to Case I B. Case Il A has solutions

j(wt) e~02

of form e only. These are exponentially damped electromagnetic
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waves and correspond to wave-guide modes below cut-off frequency.
None of these cases is of interest. For case 1l B, however,

Equation (32) may be written as:

1(yb) 1 [K (Fa) 1,(Tb) + 1 (ra) K (rb)j
"B' - (33)

"B [K,(Fa) I(Tb) - I_(Ta) K_(T'b)]
To derive Equation (33) we define

W

oW
ﬁ-a—iaﬂ
o o

or

e pq1

w»
"
»
+

From the form of Equation (33), we note that wq < Wy - Usually Wy <« w

and we may let wq << w; therefore, since

and

we may set " = y = B Define A=pa, B=pb, and R=8_r.

Then we can write Equation (33) as

2 IO(B) KO(A)
R1 Bli(B) KO(B) ST ) (34)

(o]

where

Figure 4 plots Ri for various values of B/A.

. 24.
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Figure 4. Values of Reduction Constant Rz
for Various Beam Geometries,

The quantity @o is the reduced plasma frequency. In any finite
structure, oscillations of the electrons will not occur at the plasma fre-
quency, since the fringing of electric fields to the wall will reduce the

electric field acting on an electron. Therefore wq <w
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I1. MODULATION BY A GRIDLESS GAP

We now seek to fird a set of suitable initial conditions that could
be used toc specify the modulation at z = 0. Since the modulation is pre-
sumed to be strong, we ignore the space-charge effects in the modulating
region. Let Ecr and ECz be the components of the modulating field,

and define the following quantities:

Ve Ve Ve
g, = o= g, = == bg = 5 -
zZC 20 Zo
T = wt R:Ber Z=ﬁez
Now let
Vi
a = V: (35)

be the modulation parameter; Vi is the potential across the gap and Vo
is the kinetic voltage of electrons entering the gap. A simple energy

calculation gives:

2
v
V. o2 e
< n
"Let
E E
e - cr ' . - cz ’
“r iEe o? €z iEe ;oa
and
4
H=2 nBo . wL
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Lieet us further assume

"), 4
[e]
it

It may be seen that this is merely a successive approximation with a as
the series parameter ¢.
Now putting the foregoing quantities into Equation (5) and equating

terms in like powers of a gives

8.4 %%, 4 1 4w,
3T t 3z chr tz gei - *tH| . (36a)
13 9¢ 4w
e R A -w—o*H> ' (36b)
=3 e, (36¢)
agrk 86rk ee,n-k gGk

+ 5 6on —2 +H| |, (36d)
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n-1
%en , %on _ (o e, ek +€r,n—kgek _ig P
3T T 82 T T rn-k OR z,n-k 92 R 2%\ "w ’
k=1
(36e)
n-1
9t 3 8t 13
zn zn _ (gr,n-k zk + gz,n-k zk> ) (36£)
k=1

Equations (36) reprezent a normalized form of Equation (17) suitable
for ballistic studies of motions in gaps. For the Brillouin case --—“-,2 +H=0

and the equations assume the simple form,

Q@
e

861‘1 ri 1
-1 = Z%r (37a)

3

[~ -3

8¢ 1 £ 1 1
ETZ + TZZ' = Z %z ’ (37b)

and for n=2,3,4, ...,

T 1 =t oE_, T3

3Tt 97 - Z(‘ir,n.k 2) AL ’ (37¢)
_k:i

9t 9t i a¢ 8¢

k k

5Tt T - - ’_{(gr,n-k—5§_ + gz,n-k-ﬁ—> ' (379)
7

§91 = §en =0 . (37e)
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It should be noted that only the solutions to Equations (36a-c) and
(37a and b) that result from the driving functions €. and e ., may be
allowed; that is, no complementary solutions may be admitted. The reason
for this is that only the motions of the electrons actually produced by the
modulating fields may exist in a real beam, and allowing complementary
solutions would permit us to say that motions exist that arise spontaneously.
Similarly, no complementary solutions may be allowed in any of the other
Equations (36) and (37).

Tﬁe fields Ecr and Ecz in the gap have been found by Wangzz
but they are too complicated for convenient use in Equations (37a) and (37b).

We may, however, use a simpler method to arrive at initial conditions.

In the usual case,

2G (R, Z) T |
Ccr r

F, (R, 2) T

CZ

Since the electric fields arising from electron motions in the gap are
ignored, we can assume that only electric fields of frequency w are

present. If

6y = FR2) T,
g, = R, 2) T
then
8F
r

oF
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and
J(T-2)

gri

gz1

Further suppose that

F = f (R, 2Z) e %
r r

F =f (R,2) e 2
z Z

then

fr(R, ®) - fr(R, -00)

fz(R, ) - fz(R, -oo)

[Gr e
ej(T'Z)sz ejz daz

iz

dzZ »

[0 o]
/G % az
r
=0

Q0

fc 2 az
z
[0 0]

Now f(R, o) is the value at the exit from the modulation region, and since

§r1 and §z1 must be zero at the entrance to the gap, f(R,-o) =0.

After modulation,

(0 o)
i(T-2) jz
3 .l G &“dz (38a)
21exil: z
-Q0
x
£, = J(T-2) G, 2 az (38b)
exit
-0
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We may identify the Fourier transforms with the gap-coupling coefficients.

If we apply the Maxwell equations to find Gz, we have

G v2
z z0 =0
L) T

Since vz << c , this becomes

G 8 G
i 9 R z), Z _ o
ROR\R SR |t 557 ° '
from which

G = J (KR) e JKZ
zZ [0}

where -K2 is the separation constant. The gap fields are given by

Q

G = [A(K) I_(KR) e JKZ g |

-Q0

where A(K) is chosen so that Gz satisfies the boundary conditions.

Substituting this in Equation (38a) gives

= 2na(1) 1_(R) o(T-2)

€
Ziexit

At the edge of the gap

av .
. _o T
Ez =T ¢ ’

if d is the gap width; then

G, =75
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where D = Bed and
D/2

- 1
g, = 2D -
-D/2

sinqu- IO(R)
€24 . TP TAY

exit

J(T-2) (39)

In a similar manner. we find

_sin-l; 1,(R)
YR B » sl o 7.}

exit o

J(T-2) (40)

We also require that the polarization distances be zero at exit
from the gap. The polarization distances are zero at entrance to the gap,
and if the gap is short, we rﬂay expect that there will not be an appreciable
displacement in the gap. These are the initial conditions for the first-order
solution. We must now establish conditions for the higher-order solutions.
Of course, the requirement that the polarizations be zero will not
be changed. In addition, the a-c charge density is zero at the entrance
to the gap. Since vy _E_:c = 0, there can be no density modulation in the
gap. Thus we must have p=0 at the exit from the gap. Since there are
presumed to be no electric fields in the gap with frequency 2w or higher,

we expect that no solutions of form,

IO(ZR) ezj(wt ~Pz)

will be excited. The origin for the z co-crdinate is at the center of the
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gap as already indicated. The actual point at which the solutions to the
wave equation are matched to the initial conditions, however, is at the
point where the electrons have just left the influence of the fields of the
modulating gap. In practical cases this should not make any difference,
as the length of the gap will usually be short compared to the reduced

plasma wavelength.
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NONLINEAR ANALYSIS OF MAGNETICALLY FOCUSED BEAMS

For convenience we define
¢ =T-Z = ut - pez . (41)

The two waves are possible as first-order solutions: a fast wave,

Bz
qQ _J¢
P21 A1 IO(R) e e ,

and a slow wave.

<Pz
; q _J¢
Pz-i Azlo‘R’ e e

If we follow the assumption made above, pq << pe ., we may add these
two waves to produce the following solutions which match the initial con-

ditions at z = 0

P"21 = M sxnﬁqz IO{R) cos ¢ . (42a)

F’Yi = -M smﬂqz Ii(R) sin ¢ (42b)

Pei = Vgq T Py = 0 ; (42c)

Vo4 T quIO(R) cos ﬁqz cos ¢ , (42d)

v\(1 = M:gq 11(R) cos ﬂqz s1n ¢ ) (42e)
where D
a sin ¥

M= 55 TTAT (421)
q ©
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Similar results have been described by Chodorow and Zitelli,

We shall now use these results to obtain the second-order solution.

From Equations (24):

where

The terms v

dt (er + QrZ) =" (ErZ + woBzZ - vzoBOZ) ! (43a)
d

I (sz + sz) =7 (EzZ - ro BrZ) . (43b)
erZ v ov

ri ri
T " Vet It Vut B (43¢)

szZ 8vzi avzi
T " Vet Br Vet Bz (434)

x B, are negligible, as assumed. As before we shall

-1 1

assume that B _, = B, = 0. We now combine Equations (43) with

Equations (8c), (9a) and (9c). Two equations result:

[\

2

t 9z c

o 8 d\%E.2 (1 9% 9 82\ 9E; 9 5 N
T mE)W C\ZrtE R E IR E

C

3
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These may be combined to yield

2
2 2 W 2
1 ? 9 ] 1 9 d 2
- r + - - + w_ J|E
(orn L 283 (F 9
we v aQ 2 2 W2\ aQ
- _P 1 9 8+z08 r2+8 I _g z2
) B z c t t 9 ¢ 8t c &
z

This equation has the same form as Equation (28), which was used to obtain
the first-order solution, except that the quantities on the right-hand side
are drive terms. If we take advantage of our assumptions, ug << c2

and wZ << wZ, we can reduce the foregoing equation to the form,

1 9 9 9% a2 2 “’22 1 s 99, 52 4,
- r + + w E = =r +
r 9r br ;Z' ;2- P z2 n T 9z — dt dzz dt

(44)
This is the wave equation for the second-order solution analogous to the
Equation (28) in the first-order case.
The solution of Equation (44) is straightforward. If the approx-

imation, pq << ﬁe , is applied,

8vzi 8vri

ot " Pz

and from this fact it follows that

s Q2 o
9z dt " %r ~dt

"

Thus Equation (44) becomes

2 dQ
1 d _ 22

(;z 2 Y et (45)
P
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In a similar manner we find

1 g8 Q. .,
2 —z tinE, T
w dt ¥ ¢

P

(46)

Now szz/dt and erZ/dt are calculated from Equations (42) and (43)

and A and v, are found from Equations (43), (45), and (46), giving

2

- 2R

i -4R

M pewg 2 2 Ri . Ri
v,2 ® 3 IO(R) - Ii(R) ————z-1 -4R1 sin Zﬁqz -
M% o |[ R? R, - 2R3 ]
Vi = €9 1 VA sin2p z -—1——-21— sinp
2 | 1-4R] T 1-4R] P |
[N
- A
2 2
1{(R) I{(R)
cos2¢ + 21 (R) L,(R) - — )
L

i sin2¢ )
sin qu n2é

(47a)

(47b)

The terms in sin ppz are complementary solutions added to insure that

'5'2 =0 at z = 0, as required by the conditions of modulation. The charge

density ﬁ'z is given by

. m%pZR2 cos2pz  2- sr?
P, = p. ————— 1+ - cosfP_z
2 o 2 1 -4R°  1-4R® P
1 1
LR I(R) I5R) 2
= - Rz - IO(R) + Ii(R)> cos 2¢

2
I,(R)
2 R

I,(R) I (R)
+ 1 o,

R
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Using Equations (47c) and (9b) we may formulate an equation for Ee and
is a function of R and 2z similar to

deduce Vg - It is found that Vo
Equations (47a) and (47b), but multiplied by the coefficient,

szewg 2 “L V:o
-2 o :;F

2
Ry
2

“L Vzo : £
In any usual case, Ez - -:2— will be 80 much less than one, that for all
practical purposes we have

Voz = Egz ¥ Bz TPy =0 (47d)

= Brz = 0.

This justifies the assumption made that Bzz
We now seek to find the polarization distances Prz and PzZ .

Expanding Equations (22a) amd (22b), we find

v ) dPl_2 . 8Pr1 dpri X 8Pri cle1
r2 - “dt or dt Dz dt '
v _ dpzZ + 8Pzi dpri + apzi dpzi

z2 - " dt S or -~ dt "0z dt

Combining these with Equations (47a and b), we have:

Mm% R® [ 1+ 2rR?
e’y 1 1 1
+ > - y) cos2f =z
1- 2R q

P_=-
z2 4 ]
ZR1 4R1 1

2
2-4R
; [(IE(R) - Ii(R) sin Zq)] ,

- — cosP z
1- 4R} P
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and

2, .2 2
pz_.Mp"R1 1_-..._21;.1_ + 1 5 - 12 cos 2p_z
r 4 2R} 1-4R; 2R} q

2- 4R’ 12(R) 12(R)
-~ ——5 cos8 ppz R~ °°s 2¢ + ZIO(R) Ii(R) i
(471)
We note that the equilibrium radius of the beam is shifted after the ex-
citation occurs, since PrZ contains a part which does not vary with time.

Figure 5 shows the effect of a disturbance on the outer radius of a beam.

RADIUS OF EDGE BEFORE PERTURBATION

.4

)
L

RADIUS OF EDGE AFTER PERTURBATION

uby!

As1.0

o e % w0 wo 4o @ 20 e

180 _
kN qu

Figure 5. Distortion of ''D-C'' Edge of Beam Sy R-F Disturbance.
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This fact will make it difficult to develop a method of calculating the surface
charge density as was used in the first-order solution. However, if we
assume that Ezz must be continuous at r=b, we may find Erz and Ezz
outside the beam. Then psZ/ € will be equal to the difference between

the values of ErZ inside and outside the beam at r=B. Following this,

we find
2
cos quz Z-4R1
p =C 1+ - cosP z| cos2¢ , (48a)
82~ "BZ | "y 4R’ 1-4RS P
1 1
where
2 2 2 2 2
c . - P M ﬂe R1 IO(B) - Ii(B) ) Ii(B)
82 4 ot A) !o[ BY - I:ol B} !ol A) B
(48Db)

Only the a-c fields are used in computing the surface charge, since the
d-c parts merely distort the steady-state solution and do not produce a-c
fields in the region outside the beam. This completes the second-order
solution. We now consider the third-order case.

The third-order solution may be obtained in much the same way

as the second-order solution. We may write

d

T Ve3tQp3) = n(E 5 -V, Bgsd (49a)
d 49b
Tt (Va3 + Q) = nE_3 ! (49D)
where
dQ v v v v
r3 ré 1 r2 ri , (49¢)
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dQ,3 o2 | %a 8,2 8vaq
T " Vet B T B T Vet B2 Y Va2 (494)

If we apply the same approximations as made in the second-order

solution and combine Equations (49) with Equations (8¢c), (9a and c) we

find
2\ /4d%E
_1_ 8 r ] + 9 z3 ; u)2 E
r 5? .5_1'- azz dtz p 23
2 aQ g 2 /4Q
_%plr e . 8 r3 _d "2 ;2 23 _d P
TTqp T Bz | Tdt dat K Vet azz dt at Py 1

(50)

This is the wave equation for the third-order solution. ,The terms in-

volving PZ arise from the current density in the Maxwellian equation,

i oE

g VX B=1J+¢€ 5+
The solution of Equation (50) is not as straightforward as was the
solution of Equation (44) in the second-order case. The Q 4 and st

have the property that

s 9.3 5 99
R i A

but this is not the case for the terms involving §, .

To deal with the part of the drive terms involving 3’2 we must
make some approximation. An exact solution may be found for part of
these drive terms. For the remaining part we may approximate the drive
terms by the value they assume at R = 0. Figure 6 shows the basis for

this method.
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Figure 6. Method of Approximation Used in Calculating
Part of Third-Order Solution.

If B < 4 the error should be reasonably small. Thus this
approximation method assumes a relatively thin beam. The method used
has the additional merit that the mathematical expressions used as drive
terms in the solution of Equation (50) are more likely to be accurate at
the center of the beam than at the outside, which is in the boundary layer
region. For the case taken to compute the values of beam parameters
shown in Figures 7-11, it was found that the error at R = B, as shown
in Figure 6, was less than 10 per cent for all the drive terms used.

After calculating the drive terms dQ_,/dt and sz3/dt and
using Equations (49) and (50), we find:

Mm3pl, I 1(R)q

v2e - —4 32(R) - 315(R) 1_(R) + —p—|CC, cos 38,z + C, cosB 2

+C4 cos (pp - ﬂq) z2+C, cos (pp +ﬂq) z ]+ klg(R) - %] ECS cos 3pqz

+ C6 cos pqz + C;l cos (pp - pq) z + C8 cos (pp+pq) z_] ) cos 3¢ (51a)
The values of the constants are listed in Appendix E.
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3
31,(R)

v® - __ée_q_ [Iz(R) - 3Ii(R) I(R) + R ] ]:C1 cos 3qu + C, cos pqz

3
+ C, cos (ﬂp- Bq) z+ C, cos (bp+ pq)z:] + [IO(R)] I_-_C5 cos 3ﬂqz

+ C, cos pqz +C, cos (pp-ﬁq)z +Cgq (Bp+pq) z] ) cosd (51b)

The -3 in the second term of Equation (51a) is the result of the approx-

imate solution. By similar methods, we find

3.2 3 2
M™B w 121(R) 319(R) 1_(R)
Vi‘; = - —s—e—s' [31§(R) L(R) - 313(3) + 1:2 . 1' - o ]

[C1 cos 3qu +C, cos pqz + C3 cos (ﬂp- pq) z + C, cos (pp+ ﬂq) 2]

+ [Is(R) 1,(R) - é] [c5 cos 3p_z + C¢ cosp z

+ C, cos (pp—ﬁq)z + Cg cos (pp+pq) z] sin 3¢ , (51c)
and
3.2 2
M7B, w 151 _(R) 1%(R)
Ve T [3I§(R) 1,(R) + 31%(R) - _._9_R__1_

1213(R)
+ -—R-z— [C1 cos 3ﬂqz + Cz cos pqz + C3 cos (pp-pq) z

+ C4 cos (B +B,) z] + [31:(3) Ii(R)] [c5 cos3p_z + C, cosp

+ C7 cos (ﬂp- ﬁq)z + C8 cos (ﬂp+ﬂq)z] sin ¢ . (51d)
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The charge density is given by

3 M>p] R} 2. .3 R AR LR
By s By —— { [$1,IR) T5(R) - 612(R) + 12 g - 6 -
- 48--;3— + 42 —«}:2———— C9 sin Squ + C10 sin (qu + C“ sm(ﬂp-ﬁq) z
+C,,sin(p +pjz|+ |21 (R)I%R) - 215(R) + 2 | |C,, sin3p_2
12 g p’ o 1! ) Z 13 q
+ (314 .sinﬂqz- + C15 s:n(ﬁpw pq‘; z + Ci6 sin(ﬁq+pp)z] sin3¢ ,
(51e)
and
. m?p3 R? DR R I(R) IZ(R) 1,(R)
5O e et (S1,iR; +9 66 + !
3 % P~ 9 86 S+ 30 2 —
L
HES 3 2 -
* 24— - 2R, - 41R) 1R [Cy sin 3,2 + C g 8inp

3

(o]
N

+Cyymanib =B)z + S, ,y(B 4R z] + [zz (R) - 21_(R) lf(re.)][c13 sin 3p_

+ C14 emﬁqz + C15 sin_(pp- ﬁq) z + 016 sm(ﬂp+bq)'z] sin¢’

(51f)

We may compute the :urface charge in the same manner as in the second-
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order solution and find:

, Mspz RZ
w e 4 . . .
Pe3 = Pq — {Cs31 [C9 sin 3ﬂqz + Cm smpqz + C“ am(pp-ﬂq)z

. 3w . .
+ C12 s1n([3p+ﬁq) z] + Cs3z [C13 sin 3§qz + C14 smﬂqz

+ C15 sin(ﬂp-ﬁq) z + Ci6 sin(ﬁp+pq)z] 8in 3¢ s (51g)
o _ MBR] . | .
Pg3 = Pg 5 C531 C9 sin 3ﬁqz + CiO smpqz + C“ sm(ﬁp- bq)z
(
+Cy, sin(pp+pq)z] + cﬁ“’32 [c13 sinquz + Cyy sinpqz
+ C15 sin(pp- ﬁq) z + C16 sin(ﬁp+ ﬁq) z]}sin¢ , {51h)
where
30 2 s 1213(8)  315(B) 1(B)
C531 = 3I°(B) 11(B) - 311(B) + Bﬁ{ - B
1,(B) K (3A) 1,(3B) +1 (3A) K,(3B)
3 2 1 o 1 0 1
- [310(3) - 311(B) (IO(B) + T)] — )
(¢] o o o
3w

K (3A) 1,(3B) +1_(3A) K,(3B)
22 = 1B Ly(B) - g - [13‘3’ - zir] xg-mnlrsm—xfm:rxf(m '

[¢] o

Q]
1
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3
BIi(B) 2

Clyy = 13(3) - 31%(B) 1.(B) + —§— - 312(B) 1,(B) + 312(3)
2 3
_1SL,(B) 1B 124(B) K (A) 1,(B) + 1,(A) Ky(B) |
B BZ Ko“:j Io(Ej - Iomj I:ou”
. K_(A) I,(B) +1_(A) K, (B)
C -

Sz 7 B 140 - 12B) AT TR )

The next step is to determine the polarization distances. From Equation

(22) we have

dP 9P , dP 8P , dP 8P , dP 8P , dP

v r3 + r2 ri + r2 z1 ri re ri 22
r3 - "at br dat 3z & Ty Yt &
2
+dP , 9P, 8P, clpri apﬂ\ , dP, 8P, 8P, dP,, 8P, 8P,
X 9z Or T & "5r/ & Bz or T"'T"'E_'
and

sz3 apzi dPrZ apzi szZ apzZ dPri epzZ dpzi

=& Ty X T8 X thr & "Bz &

apzi apri dF, zi zi dpri dpri oF, ri apzi
dr oz dt T_T X ta v e

With these equations and Equations (51a-d), we may compute the

+

third-order solutions for polarization distance. However, the expressions
for the third-crder polarization distance are rather complicated, and
since they could not be correlated with experimental results, they are of
little interest and will not be given. Graphic results for a typical case

are presented in Figure 7.
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As before, we find that thé TE quantities are so small that they
may be taken to be zerc. Each cf the third-order quantities has two parts,
one with frequency .. =and one with frequency 3w. The terms with fre-
quency w add, of course, to the first-order solutions. We note that the

results obtained thus far, when added, are series of the form,

n(MB )"
r,z,t) + ————— f (r,z,t)
Zn n
n=

If we assume that the functions fn all have some upper bound, the con-

vergence of the solutions depend on the convergence of the series,

oo n(Mpe)n
Zn
n=

This series converges for Mpe < 2, and we may conclude the Mpe must
be less than two for the re:zults to be valid. However, the results should
be used with caution for Mﬁe > 1, since there is no certainty that the
series solution cof the problem would have the form given above because the
general term is not kncwn. But we can say that the series will certainly
be a power series of form,
f(r.2,8) + ) C_f(r,z,t) (MB)"
n=

and should be uniformly convergent for Mpe < 1.

One further quantity is of interest. This is the total current density

;I_ . We have
b n

- dR
In =% Z Pn.x Yk B: * Jenb ! (52)
' 0 \k=0
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where

We now consider the results of the analysis.
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CONCLUSIONS AND RECOMMENDATIONS

The results cf the precedihg sections are shown graphically in
Figures 7 through 11, The beam geometry was assumed to be such that
B/A=.5 and B = .5, and Mﬁe was taken to be equal to one. This is a
reasonable value cf beam gecmetry, and Mbe was chosen to be large
encugh to show the nonlinear effects well.

Figure 7 shows the longitudinal polarization distances. It may
be cbserved that the third-crder peclarization distance is quite large.

The amplitude of the fundamental polarization distance is strongly in-
fluenced by the correction term obtained from the third-order solutions.
An interesting detail may be observed about the second-order polarization
distance. The amplitude cf this quantity never changes sign, so the
pclarization distance is alwaye :n the same direction. This effect may
alsc be noted in Figure 5, where the =dge radius of the beam is always
decrensed by the R-F disturbance. This effect ie strongly related to the
choice of modulation ~onditions made here and might not be observed if
different modulaticn ccnditions were used

Figures 8 and 9 show the velccity modulation effect. The longitudinal
valozity 1s alrnost pariodic :1n appearance and the fundamental component
i not toc strongly influenced by the higher-order solutions. The velocity
182 2hown for the case of :lectrone at the center of the beam. For relatively
*hin beams there will not be much variation in the relative amplitude of
the components as one moves from center to edge. The radial velocity
at the edge of the beam is completely aperiodic and shows extreme

fluctuations.
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Of most interest is the current density, as this is strongly related
to the output voltage to be expected if an output gap is placed at some point
following the input gap. If we imagine that an electron moves through a
gap in a drift tunnel, we see at once that it will induce a charge on the edges
of the gap and therefore produce an electric field across the gap. Naturally,
the strength of such a field would be proportional to the number of electrons
producing the induced charge. This rough example gives an idea of the
relation between the induced electric field and the current density in the
gap. If mathematical expression of the relation is desired, it may be

deduced from the fact that

; 2
frl ey

where ET is the total current and -{c the conduction current.

Figures 10 and 11 show the amplitude of the components of current
density at various distances from the input gap. It is found that the radial
current density is of the order pq/pe less than the axial current density
and hence constitutes a very small portion of the total current.

Most of the fundamental current density is produced by the surface
current. In the higher-order solutions, the current is produced by both
conduction and surface effects. The higher-order conduction currents
arise from the density modulation of the beam rather than from the velocity
modulation.

The contribution of the third-order correction term to the fundamental
is most significant. It is found that the voltage across a hypothetical

output gap placed one-quarter-plasma wavelength from the input will
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increase with increasing input voltage, but if the input voltage is made
large enough no further increase will be obtained. This effect is shown
by Figure 12 and indicates a method of applying the results to the problem
of current saturation in klystrons. The amplitudes of the second and third
harmonics are shown for comparison.

It will be noted that the higher-order solutions apparently tend to
become infinite if pp = qu or pp = 3pq . Actually this is not the case.
If one of the these conditions is true, a driving frequency will be equal to
a natural resonance of the system and growth of the waves result. This
is a sort of parametric amplification and has been observed in actual
beams by Mihran.Z4r Faor the case pp = Zﬁq we would have, for example,

E , = sze 12(R) - IZ(R)] [1 i 08P z | sin2
22 = —“7'— o 1 - ppz smﬁpz -C P ¢

A plot of the axial current density is given for a case in which ﬂp = qu
in Figure 13.

This effect of harmonic current growth under appropriate conditions
obviously would have important implications for the design of frequency
multiplier klystrons. The theory of the confined beam developed by

Pas_chke14’ 15, 16

predicts such behavior only for very thin beams, but
since the Brillouin beam has a property of possessing a natural resonance
at the plasma frequency, it should be possible to obtain growth in the
amplitude of the harmonic with any beam geometry.

The present work also can be applied to the suppression of outputs

of unwanted higher harmonics in klystrons. It will be noted from Figure 10

that both second- and third-harmonic current amplitudes are small at
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180/ ﬂqz = 70°, while the fundamental component is quite large. This
would be an ideal place to put an output gap, if it were important to suppress
the output of second and third harmonics.

This analysis leaves several problems unsolved. The most
important is the problem of satisfying the boundary conditions at the edge
of the beam. The method employed here forces the solutions to satisfy
the boundary conditions by making an appropriate choice for the surface
charge density. However, there is some doubt as to the validity of this
step. Perhaps further research will shed some light on the solution of
this problem.

A nonlinear analysis based on the small-signal analysis of Paschke13
failed to give a convergent series of functions as a solution. The basic
equations used in this analysis are believed to be correct therefore, and
the approach used here should be a good method for further work since it
is relatively straightforward. The problem of the extension of this analysis
to a beam with more general focusing system, however, would be a most
difficult one. Studies of electron motion in gaps will also be useful to
give a better descrjption of the initial conditions.

This study is believed to be the closest approach yet made to the
description of the behavior of an actual device, since the effects of a
finite magnetic focusing field are taken into account, and it is hoped that
the results of this study will be useful in predicting the behavior of actual
devices. There is still much work to be done, however, before we can

obtain an accurate picture of the large-signal behavior of real devices.
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APPENDIX A: GLOSSARY OF SYMBOLS

Roman Letter Symbols

[ ]

>

(%N
[\

N L2 ]

wQuuwuumd:x»:»

o

o g & A o

I N
L S

—
o]
-
—
-

-
o

[¢]
-

ZB’“

radius of drift tunnel

B2

constants

radius of unperturbed beam

PeP

radial magnetic-field strength
longitudinal magnetic-field strength
azimuthal magnetic-field strength
focusing magnetic-field strength
velocity of light

constant

width of modulating gap

P D

electronic charge

electric field

notation for functions

notation for functions
40

normalized magnetic-field strength, -z;l"-
modified Bessel function of first kind
current density

modified Bessel function of second kind
magnetic constant

gap-coupling coefficient
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O w 3

b2 ]

electron mass
polarization distances
drive terms

radial co-ordinate
Per

time

wt

velocity

longitudinal co-ordinate

Pe2

Greek Letter Symbols

modulation coefficient

phase constant

w/v

zo0
wp/ V2o

wq/ V20

radial propagation constants
permittivity of free space
e/m

azimuthal co-ordinate
permeability of free space
normalized velocity

charge density

surface charge density
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T-2
fundamental frequency

nBg
Larmor frequency, —

plasma frequency

reduced plasma frequency
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APPENDIX B: THEORY OF THE RELATIVISTIC BRILLOUIN BEAM

We now seek to extend our analysis to include beams in which the
d-c velocity Voo does not satisfy the condition V2o << c¢.

To facilitate the analysis we choose a co-ordinate system moving
with respect to the structures surrounding the beam with the velocity Voo
and in the same direction as the electron stream. As before we refer to
the co-ordinates described by Figure 3 of the text as r, 6, z, t, the rest
system,and denote the co-ordinates of this system as r', 6', z', t', the
beam system. We restrict our attention to the Brillouin beam.

The equations of motion for small-signal solution in the beam
system may be written as

8% p;

r1i

J.

01

1
nEyq trep By

@.\l:

We proceed to derive a wave equation exactly as in the first-order
solution in Chapter II. We neglect TE quantities, combine with the Maxwell
equations, and arrive at the following result:

2

2 2 2 w
: 2\[1 & _, 8 _ 8 19 Vo
8t 2 +wP> PN T PIERPY s 2 A :E o0 B
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It will be noted that these equations are the same as those of the
main text except for the replacement of the d/dt of the text by 8/8t'.
The reason for this is, of course, that 9/8t *Voo 8/9z = d/dt, and Vo
appears to be zero in the moving co-ordinate system.

The boundary conditions are matched in the same manner as in the
main text and we find two possible sets of solutions to Equation (B. 1) for

space-charge waves after conditions for propagation are considered:

'(1) - § t 3 ] |(1) 1

Pyt = 1ty e exp it - M an] (B.2)

and
Pyt = expCiat - 8P 20] | (B. 3)

where

L, o2\ Ly b L R rranriey 41 (rran K, (revy
YBT\T L) TIVE) T YTBT ) K (TTa) I (r'b) - I(T'a’) K (T'bY)
(B.4)

and

2
W

y'z I"2+—§
c

The values of ' (1) and ' are fixed by Equation (B.4); p' (2) may
assume any value. Figure 14 shows the appearance of a typical set of
solutions for w' and P'.

The next step is to transform the solutions (B. 2) and (B. 3) into
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solutions useful in the rest system. The equations of transformation are:

z = ——————z— (z' - vzot') (B.5a)
1 - Vzo '
-2
c
r = r' (B. 5b)
6 = o' (B. 5¢)
1 V2o 2!
t = ——— t' - — . (B. 5d)
vZ c
4 . 20
2
c

Further, if we have a wave described by

j(w' t' - B z')
]

in the beam system, we find that the same wave is described by

v W'
zo -

B! p'+ 2
t
o]

w +v
R L S
vz vz
1.2 . 20
-2 -2
c c

in the rest system, by straightforward application of Equations (B. 5).

e’

Thus, we conclude:
vzo w'
B+ 25—
_ c
p = e (B.6a)

vZ

. 29
-2

[

-61-



t + v ﬁl
? z0 (B. 6b)

@
2
v
zZo

1-—
[]

The equations of transformation for the electromagnetic fields are

- ]
E, = E_ , (B.7a)
E, - —_ (E) +v__Bp) (B.7b)
2
1 - zZO
2
C
E, - S (Eg - v,oBL . (B. 7¢)
2
1 - 20
-2
C
[}
BZ = BZ (B.?d)
B = 1 ' V20 ot
p = ———— |B, - & Eg (B.7e)
V.?. c
1 - 20
)’
B. = 1 B' V2o E' £
o T —== (Be*—Z Er (B.79)
vZ c
% - 20
-2
C
g' v|z vzo
p = i- -——z—-— . (B.?g)
v - ¢
4 . Z°
2



The velocities transform as follows:

¥ vz
= z L & zo B.8a)
Vz___:__._ H vz -— (B. 8a
vV!''v c
z 2o
1-__2__.
c
2 v? v
~ - r, o 20 . art 0
vr,e-__.’__.___ 1,.._2_ _vr’e 1-_2.. . (B. 8b)
Vv v c c
z 20
1-__2.__
c

With the equations of transformation (B.5), (B.6), (B.7), and (B.8), we

find the following solutions valid in the rest system:

j(wt -Bz)
e

B, =1(y) (B. 9a)
. wvzo
o\ jlut - Bz)
pri = Ii(yr) e (B. 10a)
Y - vZO
7
_—
vy = ey, ) iy & P (B.9¢)
U)Vzo
" Pvg \P 2 (ot - B2)
c J)
V., = - I(yr) e (B.94d)

ri ~ 2
v

zo

c
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In Equations (B.9)

(B. 9e)

(B. 94)

(B. 10a)

(B. 10b)

(B. 10c)

Equations (B.9) give the solutions in the rest system corresponding

to Equation (B.2). Waves in the rest system corresponding to Equation (B. 3)

have the form ej(wt - pz)’ where

-64-
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and

w =z 20 . (B. 11b)

It should be noted that wp is the same in both co-ordinate systems.

To determine the phase constants for the waves, we use the
following procedure: A curve of w'-p' similar to Figure 14 is calculated,
and the value of w in the rest system is specified. Then the values of
w' and P' are determined from the diagram so that Equations (B. 10b)
and (B. 11b) give the correct value of w in the rest system. The values
of B in the rest system may then be found from Equations (B. 10c) and
(B.11a). There will be two waves of each type for which propagation is
possible.

In general, each of the two waves in the beam system corresponding
to Equation (B. 2) will have different frequencies as well as different phase
constants. This fact would make it very difficult to apply the method
described in Chapter IV to get a large-signal solution. Probably the best
method of approach to the problems of large-signal solution and initial

conditions would be through use of a computer.
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APPENDIX C: NONLINEAR EQUATIONS OF MOTION
IN TERMS OF THE POLARIZATION DISTANCES

It may be useful for some purposes to have the nonlinear equations
of motion stated in terms of the polarization distances rather than the

velocities. These are given as follows:

First-Order Equations:

dP,

2
d 01 _ .
a:z- Pri + 2k u)L X ‘I']Eri + nrwoBzi - nVZOBei (C.1)
and
<:l2 dpri
32 o1 T HmL & T et * Mao Py (C.2)
and
dZ
;t-z- Pzi = nEzi - ﬂl‘m(,Br1 (C.3)
Second-Order Equations:
a’p dP,, o8P, d°P, 8P, d°P, dP dP
re + 2k 02 z1 z1 . ri ri + ri @ ri
&l m®L J t ‘5“‘ "“T BT T2 d &
2
.2 dF‘z1 ) dpr‘l 1 dP91 . 2K OPei dP
dt 5z ~dt r \"dt m“L 9z T
P P dP dP
91 04 - 01
ek o\ o - T ) (—&'t_) =B tre Bt n—g— B
dpzi
"M g Bet - WeoBe2 (C.4)
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and

2 2
S I 7 S r TR M YO deri s 9Fo1, %Foy 4 Fy
Tate m¥L ~dt at 5z “dt Br “dt Bz -;Z—

a? Py 9P\ Fou 8P, 8F,, P4 9%,

<z %) F " m ©l, TFz- “q " *m "’LT‘T

+

dP dPri

= ﬂEeZ + T]T— T']—at—Bzi + nVZOBri (C°5)
and
a?p . 8P, d’p, 8P, d°P dP dp dp dP

zZ zi z1 + z1 ri +2 z1 9 z1i ‘2 1 9 zi
—_'Z_ Bz ate -} ate d& 5z a r ~—dt
dl:’r1 dpﬂi
=nE , - T Byt —g Bgy = M x B ’ (C.6)

The third-order equations are very involved, and probably too
difficult tc use in practical calculations, so we do not include them. It
may be seen that application of Equations (C.4), (C.5) and (C. 6) to the
prcblem of finding a second-order solution would be more difficult than

the method of Chapter 1V.
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APPENDIX D: SMALL SIGNAL SOLUTIONS FOR ARBITRARY VALUES
OF MAGNETIC FOCUSING FIELD

If we assume that magnetic forces on the electrons are small
compared to the electric forces (and this will be the case for nonrelativistic

beams), we may write the equations of motion as follows:

dvri .

X + kavaei = 'qEr1 s (D. 1)
dv61

T - kL Vg = MEgy g (D.2)
dvzi

T = T]Ezi . (D. 3)

We now combine Equations (D. 1), (D.2) and (D. 3) with the Maxwell
equations, assuming that beam scalloping is small so that Vo =0 The

assumption is made that E is small so that Equations (D. 1) and (D. 2)

o1
may be combined in the form,

d%v dE
ri 2 2 ~ ri
=z P *m ULVt T (D.4)

Then Equations (D. 3) and (D. 4) are combined with Equations (8c), (9a),

and (9b) to give the following results:

Voq © Io (ybr) e‘i(mt - Pz) ) (D. 5)
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] ij 1 ) t'
Vr1 = B T2 Iyyr) & P2) (D. 6)
e 4k " w
1 - m L
w
q
where
wz
2 2 2 2
X Be 1-;§ [4kme-wq]
Yy * r— 1 - . (D.7)
[4k wz + wz -w ]
m L P q

and B = pe t {iq as before. For purposes of matching at the beam

boundary we have

2
. w Liyd , [X(ra)1,(rb) +1 (ra) xi(rb)]
- —Br o ) Py - ,
WP wq-4kmuL o' ¥b T | KTy, B Sl ™
(D.8)

where l‘z = pi .

So far the solution is comparatively uncomplicated. However, we

also have:
2k w. vy .
m L'b 1 j(wt - fz)
v, = ¢ I.(y,.r) e . (D.9)
] que 4% “{ 1'%
1-—S5—=

w
q

It is the presence of the velocity in the 0-direction which makes the
solution difficult. As may be seen from Equations (D.7) and*(D.9), if
zkm“'L << wq, our results for the Brillouin beam are still very good

approximations. However, if this is not the case, then the existence of
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a velocity in the 6 direction makes a nonlinear solution much more
difficult to obtain.

The quantity E is also of interest in this analysis. We apply

o1
the previous results and Equation (9b) to find:

’

_ o
nEgq = '—q_Z'{wo YT L(vpr) +

A
Yy © Y Pe
m “L ~ “q T2

° A lwt-pz) (D. 10)

Yp

2
ka Wy, wp

Because of the factor 1/c2 in the first coefficent, the value of Equation
(D. 10) will always be small, as assumed above.

To sum up, we see that the analysis of this section shows that
the analysis of th.e Brillouin beam may be applied when km is small.
If km is not small a nonlinear solution will be most difficult to obtain,

. and the analyses made of the confined beam may be of considerable use.
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APPENDIX E: VALUES OF CONSTANTS USED
IN THE THIRD-ORDER SOLUTION
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ABSTRACT

This note discusses kinetic power flow and kinetic energy in
relativistic space-charge-wave devices. The electrons are constrained
to move in the z-direction only. The average electron velocity is

assumed to be an arbitrary function of z and the transverse co-ordinates.



I. INTRODUCTION

Practically all low-level longitudinal-oscillation electron-beam
devices, such as h-{f diodes, klystrons, traveling-wave tubes, etc., are
best described and understood in terms of linearized space-charge waves. !
In addition to the electromagnetic power flow, given by Poynting's vector,
these waves are associated with a kinetic power flow. To take advantage
of the power -conservation principle, one has to take the kinetic power flow
into account. In doing so, however, one finds that cross products between
the wave quantities have to be included in order to get a finite time-average
a-c power flow, Such cross products are ignored in the linearized space-
charge-wave theory, and one is therefore inclined to believe that a first-
order nonlinear space-charge-wave theory is necessary in order to formu-
late expressions for the kinetic power flow and the kinetic energy,

It was first realized by Chuz that the kinetic space-charge-wave
power flow, can, in fact, be expressed in terms of the linearized space-
charge-wave quantities in spite of the fact that the expression will contain
cross products that are of the same order as the first-order nonlinear
quantities that are ignored, The expressions and concepts developed by
Chu have led to many important discoveries concerning the flow of signals
and noise in electron beams, Y \

An elegant treatment of the kinetic power flow has been given .by

Louisell and Pierce, 3

These authors deal with the case of a aonrelativistic
electron beam with constant average drift velocity, The purpose of the |
present note is to construct expressions for the kinetic power flow and the

kinetic energy in a relativistic beam with arbitrarily varying drift velocity,



II. BASIC RELATIONS

To begin with let us deduce a general relation which can be obtained

from Maxwell's equations:

8%

cur1ﬁ='f+c'ﬁ" . (1)
curl E = -F%?‘ . (2)

If one multiplies Equation (1) by E, Equation (2) by H, and subtracts the

two equations,one obtains

div B+ o Wonti-E=o0f (3)

1 2

where .1'5.m = E x H is the Poynting vector while wem =3 E°+ é- # I-iz
is the electromagnetic energy density. It should be pointed out that we have

made use of the vector formula,
2a.curlb.B. curla+div(@xb)=0

in deducing Equation (3).

In addition to the electromagnetic energy and power, we have a
kinetic energy density Wk and a kinetic power-flow density Fk associated
with the electron beam. Since the total energy is conservative, we have

the continuity equation,

aiv (B, + B+ oW W) =0 . (4)



From Equations (3) and (4), one expresses

oW
- Kk
i.E=dika+Tt— . (5)

We are assuming that the electron motion is constrained to the
g-direction only. Thus i and l='k have no components in the transverse
direction and Equation (5), which like relation (4) describes energy con-
servation, can be written in the form,

P ow
iy = i b (6)

where i s is the total (dc + ac) electron current density of the beam.

If the total kinetic energy of the electron is w, one has

dws-eEgds or X ._.E : )

Furthermore, one has the relations (p = electronic charge density),

wk = -_E; w (8)
and
iz
sz =T v (9

By the use of Equations (7), (8), and (9), the continuity equation

(8i ./Ol) + (89p/8t) = 0 and the relation i g = VgPs one obtains



Pys MW 1 |Ms L, w8, bW
os ot e |9 z 9z 8t P 3t
i
1 w 1] Ow z dw .
- o i *— a—— - ome eomem = E ’ l
*Te '[’l Vs Dt] "TT @ vs (10)

which proves Equation (6).



III. KINETIC POWER AND ENERGY ASSOCIATED
WITH THE LINEAR SPACE-CHARGE WAVES

We now write

iz=i°¢il+iz p=p°+p1+pz ,

yz=v°+vl+vz Ez=E¢~i'El-O-Ez ,
where the subscripts o, 1,2 denote terms of the zeroth (i. e., undisturbed
d-c terms), first (i. e., linear perturbation terms) and second (i. e., lowest
order nonlinear perturbation) order, respectively.

1f one expands Equation (8) to the second order the result can be

written in the form,

WS W W, (11)
where

v =.1 w_+|(v +v)z-v2 w'| + w_t2v v, w

kl e Po o o 1 o o P L] ol o ’

(12)

and

w =-1 Zvvw'+2vzvzw" +p,wW (13)

k2 e (%o 2 ol o 2% '

where w_ = w(v ), w! = dwo/ d(vi), and w = dzwo/d(v:)z The reason
for choosing 'kl and sz in this particular manner is discussed later.

Similarly one can expand Equation (9) to the second order and write
the result in the form,

sz = Pkl + sz , (14)



where

Pkl=-

o)

(g +i) )W, +2v v w!) , (15)

and

1 2 2 2 .
sz = -z ic’(v1 w<'>+ Zvovzw(" + Zvo v wg)+1zw° . (16)

The second-order expansion of the product i zE g 30 be written

in the form,

1By = - 'ei %%’ = “zEz)lﬂizE:)Z ’ (17
where
(1B, = -+ [(i°+ il)Dz(wo-vaovlw",)] . (18)
and
(i'Ez)z = -é- io [Dz(vi w‘; +Zvov2w(') + ng vf wg) -
wé avf:l +i,D.w ; (19)
'v_o' S 2%& o ’

Here D_ denotes the linearized operator d/ds, i.e.,

8 1 98
Dy=%: *v; ot -

Now, from the lineariged space-charge-wave theory one can in
principle calculate E +E,), igtij, v tv,, and p +p; for any given
space-charge-wave device, We observe that Equation (18) is the product
{i °+il)(E o*El)' Furthermore, one easily shows by the use of Equations
(12), (15), (18), and bil/B: = - Opl/at that the energy conservation

relation,



_ kl
(1Ey), = ™ + T , (20)

is fulfilled for our choice of Pkl and wkl . It is clear from Equations
(12) and (15) that we do not need to go beyond the linearized space-charge-
wave theory in order to express Pkl and 'kl . Nevertheless, since the
energy conservation relation is satisfied, we can define Pk | s the kinetic

power flow and wkl as the kinetic energy density associated with the

linearised space-charge waves.

By the use of Equations (13), (16), (19),and Diz/az = apz/at. one

can easily show that the energy conservation relation,

s a 1

(i ,E,), =

holds for P, and W_, . These quantities, which are of the second order,
cannot be calculated without knowing the lowest-order nonlinear space-
charge-wave terms i,, v, and p,. Thus we define P , and Wy, as the
second-order power flow and energy density respectively associated with
the lowest-order nonlinear space-charge waves.

It should be pointed out that l?k 1 and Wk 1 contain terms of the
seroth, first, and second order, whereas sz and sz contain terms of
the second order only. It follows that Pkl and Vlkz include all power-
flow and energy-density terms respectively of the gseroth and first order,
wher eas they only account for that part of the second-order terms which
is to be associated with the linearized space-charge waves. The remain-

ing second-order terms are described by sz and sz , Tespectively,



Thus Equations (13) and (15) do not enable one to deal with energy and
power to the full second-order accuracy unless sz =0= sz, which is
usually not the case, This circumstance, however, is of minor impor-
tance,since one is seldom interested in accurate power-flow calculations,
whereas the energy conservation principle that applies to Wk 1 and Pk 1

is an extremely useful tool in many basic investigations,



IV. THE RELATIVISTIC EXPRESSIONS FOR P,_, AND W, ,
IN NONHOMOGENEOUS BEAMS

In the relativistic case the energy of the electron is expressed by
the well-known relation

g v
wiv,) = mocz [(1 - 42) - 1] ' (22)

c

where m is the mass of the electron at rest and c is the velocity of

light in a vacuum.

By using Equation. (22), one obtains from Equation (13),

D

and from Equation (15),

2\-4 2\ -2
™, : 2 Yo ¢ 2 Yo 2
pkl = - (i°+11) c l-c—2 -c +v¢vl 1-7 . (24)

In expressions (23) and (24), v o is an arbitrary function of s

while p °(l) is fixed by the rclati'on vo(l) P o(l) =i o™ constant, The wave



quantities i)» p;, and v, are functions of =z and t to be determined from

Z. one finds that

the linearized space-charge-wave theory, If vz <<c
Equations (23) and (24) reduce to Equations (14 and (13). respectively of
Louisell and Piezxce, 3 which shows that these authors' expressions are
perfectly valid for the nonhomogeneous (voq‘ constant) case,

Finally, we express the time-average kinetic a-c power flow from

Equation (24),

2\ -
: v Z
<pk> ac = ° _‘2 v, (1 -_‘2’) ;,_L Re(ilvl*) . (25)

[ o4

It should be pointed out that the important Equations (23), (24), and
(25) are valid regardless of how Vor Pgr and io(a povo) vary with the

transverse co-ordinates.

10
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ABSTRACT

The relativistic linearized electronic '"telegrapher's equation'' of
the Llewellyn parallel-plane gap is deduced. General expressipns for the
a-c quantities, such as the electric field, the electron velocity, the con-

vection current density, and the gap impedance are worked out.

iV



I. INTRODUCTION

Suppose we have two parallel-plane electrodes (two grids, or a
cathode and an anode) between which a single-velocity electron beam
propagates perpendicularly to the electrodes (the positive z-direction,
Figure 1). The beam and the electrodes are assumed to be sufficiently
extended in the transverse direction so that fringe effects can be ignored.
The d-c voltage between the electrodes is such that no electrons are re-
flected in the gap. There is an a-c voltage between the electrodes, and
the gap is loaded by an external a-c circuit connected across the gap.

The a-c behavior of such a system was studied in detail by
Llewellyni’ 2 more than twenty years ago. Llewellyn's theoretical work
has been of enormous importance in connection with the understanding of
high-frequency phenomena in various electron devices, such as diodes
and multigrid electron tubes, klystron gaps, etc. Llewellyn's classical
analysis was based on the so-called ballistic approach and involved a
tedious integration procedure. Recently Rydbeck3 has published his early
(about 1953) ''telegraph equation'' studies of the axially inhomogeneous
ionized stream. In these studies Rydbeck deals incidentally with the
Llewellyn gap. His approach is based on the space-charge-wave concept,
first introduced by Hahn, 4 and while his results are identical to those of
Llewellyn, his approach is considerably more efficient.

One of the dominant trends in modern microwave electronics is

the development of extremely high-power electron devices. Continuous-



wave klystrons for 1-Mw, S-band power are now under development. Such
tubes utilize relativistic electron beams (up to 300 kev). It is therefore de-
sirable to extend the parallel-plane gap analysis to the relativistic velocity
region. The purpose of this report is to present an introductory relativistic
linearized gap study based on the space-charge wave approach. Explicit
relativistic expressions of general nature for the various a-c quantities
have been worked out. The studies will continue in an attempt to apply the
general results on specific technical problems such as the space-charge-
limited high-frequency diode with a relativistic anode voltage, the relativis-

tic klystron gap, etc.
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Figure 1. Llewellyn Electronic Gap.



II. THE LINEARIZED RELATIVISTIC WAVE EQUATION

To begin with, let us introduce the following fundamental notations:

w = angular signal frequency

t = time

z = axial co-ordinate, position of the electron
-4.-,/m° = electronic charge-to-mass ratio (at rest)

€ = permeability of vacuum

c = velocity of light in vacuum

v(z,t) = vo(z) + vi(z) ej“’t = total electron velocity
vo(z) = d-c velocity

vi(z) = amplitude of a-c velocity

plz,t) = po(z) + pi(z) ej“’t = electronic charge density
po(z) = d-c charge density

pi(z) = amplitude of a-c charge density

i(z, t) = io + ii(z) ej“t = electronic current density
io = PV T d-c current density (constant) in the positive z-direction

ii(z) = VoPy *t V4P, = amplitude of a-c current density

E(z,t) = Eo(z) + E 1(z) e'i"’t = total axial electric field in the positive

z-direction
Eo(z) = d-c field
E 1(z) = amplitude of a-c field



The Relativistic Equation of Motion:

A.
d v e
. = (1
dt ( vz)l/z m, )
)

c

Remembering that dz/dt = v, we can write
2 . (2)

- ¢
dz (1 VZ) 172 = mo
T2
c

Now, if Ivil<<e, then
<:Z ~ cz + jwt d Cz =
2\1/2 2\1/2 ° 2\1/2
A 1. Yo 1 - !2.
c2 cz c
2 vV ej”t
: ¢ == (3)
= 2\1/2 2\3/2
v v
-5 s
c c

By the use of Equation (3) we can separate Equation (2) into its d-c and

a-c parts: -

d ___72.° 2
l -
- :z- -

(4)

(5)



A. The Relativistic Equation of Motion.

d v e
— = .2 E (1)
L3 W2 \172 My
3

Remembering that dz/dt = v, we can write

d cz e .
- B o —— . 2
dz 1—.!?:,—177 ™, E (2)
c2
Now, if v, <<c, then
cz - cZ Jut d c:2 =
N 2z 1T & 211/2
1-!.2.1/2 .Y o (l-!g)
c cz ¢
cZ AL e"’t
= ( V2 )1/2 + ) ‘)372 ' )
1..9 __o
3 ( <

By the use of Equation (3) we can separate Equation (Z') into its d-c and

a-c parts: - —
.aé.. (I_VC;,V? = 'a{: E, . (4)

| -? _

- 7
R
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The a-c velocity can now be expressed from Equation (5):

( vi)s/z
e|l]l « e
ot c? ot
v,e = - E. e de . (6)
1
movo i
B. The Equation of Continuity
8i, et 9p oot
1 A N (7
oz ot
Since
4 _ 8 ,d 8 .8 1 9
dz ~ 9=z 2z 8t Oz Vo ot !
one can write
dilc.-j"'t bile'i"'t 1 ailej“t
dz . = T8z Y v ot : (8)

By the use of Equation (7) and the linearized relation i 150V Y PV

we obtain from Equation (8)

= — v,@8 .
de Vo 1
Introducing the notations,
pz ) -ep, ) - oio
P. 2 3
° m e vV, m.e v,

pe = m/vo , and ko = w/c , one obtains by the use of Equations (6) and (9)



p: (213/2
ilej"t = e .;29_ El_j [52 (1.:‘%) E e dz:, ds , (10)
e e e.

where use has been made of the fact that ﬁ: /ﬂ: is independent of Vo
o
(and z).

Let us now define a wave potential I(6) by the expression,
K2 3/2

_ 1 2 o jo 1

= Joe, E:f[ﬂe("‘;‘z‘) lee pede]de, (11)
e

where we have introduced the d-c drift angle 6 = Ipedz. Furthermore,

with d@ = B,dz, one gets ut:fudta’f-‘-,% dz=fpedz=6.

El can be expressed from Equation (11), vis.,

E. =

-jo d 1 d
1

1
B Pt m )3f2 g M. 12

o

L -
or in an alternative form,
( al' ]
2
_d -jo ) d 1 d
Bl = e, © (36 ( 213z | ~™e 2 (""f‘72‘21
1- ..2.) - ..9.)
2
L pe! ]
\ /
(13)
Equations (6) and (11) yield
1 -jo d
v, = -j‘“c 'xﬁi: ed E: 36 (Pel) (14)



From Equations (10) an d (11), one obtains

Pe
i = =2 e (15)
B2
C. Gauss' Law for the Electric Field
9E P
0 =2 (16)
9z €,
aEl )
z o

For the moment we are going to ignore Equation (16) since we want to keep
Vo @ completely arbitrary function of z. However, Equations (7) and {(17)
yield

8 .
' (l.l'l'ﬁnoEl) =0 (18)
if we ignore the fringe fields. Upon integration of Equation (18),0ne obtains

il+ju¢°l:l = ic , (19)

where ic is a constant, The current Icej“t = Aic ca'i"'t (where A is the
area of the beam cross section) is, of course, the a-c conduction current
in the external circuit between the electrodes. In dealing with pure space-
charge waves, one assumes that the gap is open-circuited, i.e., ic=0.

With respect to the nature of our problem, we have to consider the case

i #0.



From Equations (10) an d (11), one obtains

2
p
. Yo dop (15)

i. =
1
>

C. Gauss' Law for the Electric Field

3E

—o. b (16)
8z €

8E; p,

E bl (17)

For the moment we are going to ignore Equation (16) since we want to keep
Vo completely arbitrary function of z. However, Equations (7) and (17)
yield

2= (i, +jwe E) = 0 (18)
if we ignore the fringe fields. Upon integration of Equation (18),one obtains

i) tjwe B =i, (19)

where ic is a constant. The current Ice'i“t = Aic e'i"'t (where A is the
area of the beam cross section) is, of course, the a-c conduction current
in the external circuit between the electrodes. In dealing with pure space-
charge waves, one assumes that the gap is open-circuited, i.e., icso.

With respect to the nature of our problem, we have to consider the case

ic;é 0.



Upon insertion of Equations (15) and (12) or (13) into Equation (19),

we obtain two alternative forms of the wave equation for M, vis,,

1 d p: j8
[+] .
Pe 36 772 a8 Py + e M=ie™ , (20
2
¢ pe -
or
g2 'y
d 1 dn Po d? Pe _i o8
de 2 \3/2 d8 * gz Pe 46 k2 \1/2 n"cej
T !
Pe Pe (21)



lII. SOLUTIONS TO THE WAVE EQUATION

The wave Equations (20) and (21) are valid for arbitrary Vo(l).
For example, if v, = constant (il.e., B o = constant, pp = constant) and

°
if 4 c® 0, the solutions are

] W2\ ¥4 V2 \ V4
n= oxp +j_l:9.. -2 0| = exp(+Jp (-;-) s,
- P, Pi =P ¢

which {s the usual slow and fast relativistic space-charge-wave pair in a
);omo.onooul electron stream.

However, {{ we do not asaumae the presence of positive lons, we can.
not choose v (8) arbitrarily aince we have to satiafy Kquation (16) which

can he written

@, i
w® v, -

Now Equation (4) can easily bs written in the form,

,,;,r(__ii;v chn

]
4

i
Upon elimination of E_ between Equatians (42) and (23), one abtains

b

B 2
o |- 1}; I r’? . (34
¢ af k: 1/3 ;?

e




which reduces the wave Equation (21) to the remarkably simple form

d 1 dn . 40
] '—_sz 3 @’ = ‘c"j - (25)
1.2
82

Observe that the characteristic space-charge-wave propagation
constant ﬂp no longer appears in the wave equation.
°

The general solution to Equation (25) is

K2\ 32
T
n-.-f (Cl-jxcej) 1-;% @+C, | . (26)

ot =]

where the integration constants C, and C, are to be determined from
the a-c boundary conditions.

We now collect our expressions for the various a-c quantities:

ll S e— 8 n ' (27)

E. = —l— ; R i Po -~ 30 n (28)

-jo| dan 1
V1= e, m:u‘j @ " T
Pe
! 2\3/2
=_l e - jo C. . jo .0
.ii"c,mﬁ,«oe (lj“)\pi

10



1
d 5 21372

1 -] (-}
- —i-—- 30 j(cl-jlce l-gi— do - Cz (29)

pe

The a-c voltage amplitude across the gap becomes

V:fEdz=j Flogo =t if @ _ Po [ _-j0p.0
=) mae | g ecmg (] By,

(30)

where d is the distance between the electrodes and Oo is the corresponding
d

d-c transit angle J'f Bodz .
(-]

The a-c gap impedance Zc finally is easily expressed from

Vc vc
yA T e T cem— .
c I Al (31)
c c
0
()
Since f de/p e =4, oneobserves from Equations (30) and (31)
o
that the cold (ppo = 0) gap impedance Z_, becomes as expected,
(\]
P (32)
o JC,

where Co = coA/d is the cold-gap capacitance,

With Equations (26) through (31), we have reached the principal
goal of the present introductory report. A continuation of the study is
under way with the aim of computing the complete set of Llewellyn co-
efficients with the relativistic corrections taken into account at least to

the first order.
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It should be pointed out that for the convenience of the general
reader, the usefulness of Equations (26) to (31) is demonstrated in the
Appendix by applying these relations to the space-charge-limited high-

frequency nonrelativistic diode.
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IV. THE BASIC D-C EQUATIONS FOR THE GAP

In order to evaluate the integrals appearing in the a-c Equations
(26) to (31), one has to express pe(z) in terms of 6(z). The purpose of

this section is to deduce the necessary d-c relations.

If Va and Vb are the d-c potentials of the two electrodes with

respect to the cathode, one gets from Equation (4) the energy relation,

2 1 e
c Z 17z Cems Vap o 3
()
1 - =2
pz
°a,b
L el
which can be written
o ,
1,2
®a, b y 'EL 2eV, \, - V. b ) / "
2 1/2  ~ 2 y
- l:g o m,c Zmoc
2
p
ea..b

Relation (34) expresses the boundary conditions of Equation (24),

which can be integzrated to obtain

1 2 i

B, pp 2eV eV 1/2

= T RN L > “zb‘)
(1--—2) p2 o m c m c

2

Pe

13



2eV
1+ L

2m ¢

2
2m ¢ o

2eV eV
1+
(<)

1/2 eV 1/2
a2 2] 1
- ¢ k_ 3 .

&
mbcz

(35)

We denote the right-hand side of Equation (35) by 8(6) and express

1 . S (36)
Pe (1412 8%) 1/2
W2\ 172
- = 743 17z (37)
pi (1+k; 8%

Since S is a known function of 6, it would now be possible to
eliminate p e from our a-c expressions by the use of the last two rela-
tions. The whole problem is thereby reduced to the evaluation of the
integrals involved and to the application of the a-c boundary conditions
with which we will not concern ourselves in the present report,

Finally we want to formulate an equation from which the d-c
transit angle 6  can be expressed in termsof i , V., Vi 4, and o .

One has

- de _
d-[F:-jo fg?,ﬁfde’ (38)

(1+ Kk

which is the desired equation.
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APPENDIX: THE NONRELATIVISTIC SPACE-CHARGE-
LIMITED DIODE

In the case of the nonrelativistic space-charge-limited diode,

Equation (24) yields

al-k| p?
1 "e Po o . (A. 1)
1 " ae o2
Pe e
and
2
p1"0 92
12 = (A.2)
pe

By the use of Equations (A. 1), (A.2) and (26), one obtains from ex-
pressions (27), (28), and (29), respectively

C Cc i
- 1 _-jo 2 -J0 ¢
i 1 4’.(-—02 e + - e —,Z) . {A. 3)
2C 2C 2i
S . Sl o0 T2 -8, ¢ i
E, fos (ic = e =— ¢ + = , (A. 4)

2C 2i
VIS% a-.—-~ (cz.-je*jic*-—e-l .-je*-?s- . (A.S)
o [+)

The space-charge-limited initial conditions are El—-b 0, vl—’o

when 6—+0. By the use of the expansion,
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e _jo-1/2)0%, ..

one now finds

=i CZ = ji . (A. 6)

Thus El can be expressed as

_ e 238 20780
El = R (l- 62 'j e +;z‘ ’ (A°7)

and the a-c voltage across the diode becomes

d eo i p: eo 2
& = 4 __c_ [ _To _2e-39 _ - je
Vc f Eld: f El pe "“o 253 f [0 2e j20e +2] de

) o e/ o
- T
< Po /l2a1 ©)-0_ sin®
= e, -p—s— (1 -cos o)- °o® OJ
e
1 .3 . ]
-j[z-ao +9°(1+c00 90)-2011160 ) (A. 8)

where use has been made of Equation (A. 2) and the fact that p: /pz is a
o

constant. One easily finds

2
o2 4
— Po % 2 Y | R (A.9)
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where Vo = d-c anode voltage, I, = total d-c electron current, Ro = the

differentiaf low-frequency impedance dV o/ dlo, from the energy relation
) 2 ;

m ovo/z = ¢V and Equation (A.2).

Theé high-frequency diode impedance can now be written

z-—vc-a—-"‘ 2(1 0 )-6_s8in@
c Al T "o L4 (1-cos o)'o‘n o
c 6
(]
-j|F 83+ (1+cose )-2sin0 (A. 10)
6‘0 o o o ! *

which is the well-known expression obtained by L.Iewellyn1 in an entirely

different manner.
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